Skip header and navigation

3 records – page 1 of 1.

Force Based Design Guideline for Timber-Steel Hybrid Structures: Steel Moment Resisting Frames with CLT Infill Walls

https://research.thinkwood.com/en/permalink/catalogue83
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Tesfamariam, Solomon
Stiemer, Siegfried
Bezabeh, Matiyas
Goertz, Caleb
Popovski, Marjan
Goda, Katsuichiro
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Overstrength
Ductility
National Building Code of Canada
Timber-Steel Hybrid
Office Buildings
Residential Buildings
Language
English
Research Status
Complete
Summary
Provincial code changes have been made to allow construction of light wood-frame buildings up to 6 storeys in order to satisfy the urban housing demand in western Canadian cities. It started in 2009 when the BC Building Code was amended to increase the height limit for wood-frame structures from four to six. Recently, provinces of Quebec, Ontario and Alberta followed suit. While wood-frame construction is limited to six storeys, some innovative wood-hybrid systems can go to greater heights. In this report, a feasibility study of timber-based hybrid buildings is described as carried out by The University of British Columbia (UBC) in collaboration with FPInnovations. This project, funded through BC Forestry Innovation Investment's (FII) Wood First Program, had an objective to develop design guidelines for a new steel-timber hybrid structural system that can be used as part of the next generation "steel-timber hybrid structures" that is limited in scope to 20 storey office or residential buildings. ...
Online Access
Free
Resource Link
Less detail

Seismic Base Shear Modification Factors for Timber-Steel Hybrid Structure: Collapse Risk Assessment Approach

https://research.thinkwood.com/en/permalink/catalogue1241
Year of Publication
2017
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Bezabeh, Matiyas
Tesfamariam, Solomon
Popovski, Marjan
Goda, Katsuichiro
Stiemer, Siegfried
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Seismic
Mechanical Properties
Keywords
Canada
Timber-Steel Hybrid
Overstrength
Force Modification Factors
Collapse Risk Assessment Approach
Adjusted Collapse Margin Ratios
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
In this paper, to supplement the Canadian building code for a timber-steel hybrid structure, over-strength, and ductility-related force modification factors are developed and validated using a collapse risk assessment approach. The hybrid structure incorporates cross-laminated timber (CLT) infill walls within steel moment resisting frames...
Online Access
Free
Resource Link
Less detail

Wind and Earthquake Design Framework for Tall Wood-Concrete Hybrid System

https://research.thinkwood.com/en/permalink/catalogue2143
Year of Publication
2019
Topic
Seismic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Tesfamariam, Solomon
Bezabeh, Matiyas
Skandalos, Konstantinos
Martinez, Edel
Dires, Selamawit
Bitsuamlak, Girma
Goda, Katsuichiro
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Wind
Keywords
Tall Wood
Seismic design factors
Wind tunnel test
Ductility Factors
Timber-reinforced concrete
Force Modification Factors
Probabilistic Model
Wind Load
Overstrength seismic force
Language
English
Research Status
Complete
Notes
DOI 10.14288/1.0380777
Summary
Advancement in engineered wood products altered the existing building height limitations and enhanced wooden structural members that are available on the market. These coupled with the need for a sustainable and green solution to address the ever-growing urbanization demand, avails wood as possible candidate for primary structural material in the construction industry. To this end, several researches carried out in the past decade to come up with sound structural solutions using a timber based structural system. Green and Karsh (2012) introduced the FFTT system; Tesfamariam et al. (2015) developed force-based design guideline for steel infilled with CLT shear walls, and SOM (2013) introduced the concrete jointed mass timber hybrid structural concepts. In this research, the basic structural concepts proposed by SOM (2013) is adopted. The objective of this research is to develop a wind and earthquake design guideline for concrete jointed tall mass timber buildings in scope from 10- to 40-storey office or residential buildings. The specific objective of this research is as follow: Wind serviceability design guideline for hybrid mass-timber structures. Calibration of design wind load factors for the serviceability wind design of hybrid tall mass timber structures. Guidelines to perform probabilistic modeling, reliability assessment, and wind load factor calibration. Overstrength related modification factor Ro and ductility related modification factor Rd for future implementation in the NBCC. Force-based design guideline following the capacity based design principles.
Online Access
Free
Resource Link
Less detail