Skip header and navigation

10 records – page 1 of 1.

Fire Endurance of Cross-Laminated Timber Floor and Wall Assemblies for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1094
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Su, Joseph
Roy-Poirier, Audrey
Leroux, Patrice
Lafrance, Pier-Simon
Gratton, Karl
Gibbs, Eric
Berzins, Robert
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Fire
Keywords
Tall Wood
Full Scale
Fiberglass Wool
Encapsulated
Type X Gypsum Board
Fire Endurance Tests
Research Status
Complete
Summary
Standard fire endurance tests were performed on a full-scale floor assembly and a full-scale wall assembly constructed with cross-laminated timber (CLT) as the main structural element. The full-scale floor assembly consisted of CLT panels encapsulated with fiberglass wool and a single layer of 15.9 mm thick Type X gypsum board on the exposed side and with two layers of 12.7 mm thick cement board on the unexposed side. The full-scale wall assembly was constructed from CLT panels encapsulated with two layers of 15.9 mm thick Type X gypsum board on both faces. Nine thermocouples were installed on the unexposed face of both assemblies to monitor the temperature rise throughout the test and nine deflection gauges were installed on each assembly to monitor deformations. The superimposed load applied on the floor assembly was 9.4 kN/m² and the load imposed on the wall assembly was 449 kN/m. The fire endurance period of the full-scale floor assembly was 128 minutes and that of the full-scale wall assembly 219 minutes. Both the full-scale floor assembly and the full-scale wall assembly failed structurally afterwards under the applied loading. No hose stream tests were carried out on the fullscale floor and wall assemblies.
Online Access
Free
Resource Link
Less detail

Fire Testing of Rooms with Exposed Wood Surfaces in Encapsulated Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue1867
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Su, Joseph
Leroux, Patrice
Lafrance, Pier-Simon
Berzins, Robert
Gibbs, Eric
Weinfurter, Mark
Organization
National Research Council of Canada
Publisher
National Research Council Canada. Construction
Year of Publication
2018
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Encapsulated
Mass Timber
Fire Tests
Fire Performance
Char Layer
Fire Regrowth
Research Status
Complete
Series
Client Report (National Research Council Canada. Construction)
Summary
In early 2018, with funding support from Natural Resources Canada and the Province of Ontario, the National Research Council of Canada conducted a series of room scale fire tests of Encapsulated Mass Timber Construction (EMTC). The goal of this test series is to further quantify the contribution of mass timber elements to fires and provide additional data for forming the technical basis for exposed mass timber elements in EMTC buildings without significantly increasing fire risks to life and property. The goal includes studying the fire performance of the 2nd generation cross-laminated timber (CLT) in resisting char layer fall-off, which could cause fire regrowth in the cooling phase of fully developed fires. The issues of char layer fall-off for the 1st generation CLT panels resulting in fire regrowth during the cooling phase of the fire were clearly revealed in the previous large scale CLT compartment fire tests under the auspices of the Fire Protection Research Foundation.
Online Access
Free
Resource Link
Less detail

Full Scale Exterior Wall Test on Nordic Cross-Laminated Timber System

https://research.thinkwood.com/en/permalink/catalogue2
Year of Publication
2015
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gibbs, Eric
Su, Joseph
Organization
National Research Council of Canada
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Fire
Keywords
Full Scale
Type X Gypsum Board
Exterior Wall
Research Status
Complete
Summary
This report describes a full-scale exterior wall fire test conducted on December 16, 2014 on a Nordic cross-laminated timber (CLT) wall system. The test was conducted in accordance with CAN/ULC-S134-13, Standard Method of Fire Test of Exterior Wall Assemblies. The test was conducted using the exterior wall fire test facility located in the Burn Hall of the NRC Fire Laboratory, Mississippi Mills, Ontario. The CLT wall system was assembled to represent a continuous solid wood wall covered by a water barrier membrane and insulation. The pilot burners were lit prior to the commencement of the test. Gas flow to the burners was manually adjusted to follow the prescribed heat input required by the standard.
Online Access
Free
Resource Link
Less detail

Nail Laminated Timber Compartment Fire Tests

https://research.thinkwood.com/en/permalink/catalogue2165
Year of Publication
2019
Topic
Fire
Design and Systems
Material
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Rooms
Wood Building Systems
Author
Su, Joseph
Leroux, Patrice
Lafrance, Pier-Simon
Berzins, Rob
Gratton, Karl
Gibbs, Eric
Weinfurter, Mark
Publisher
National Research Council Canada
Year of Publication
2019
Format
Report
Material
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Rooms
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
Fire Tests
Compartment Fire Test
Encapsulated Mass Timber Construction
EMTC
Exposed Mass Timber Elements
Research Status
Complete
Summary
In early 2019, with funding support from Natural Resources Canada, the National Research Council Canada conducted a series of room scale fire tests of Encapsulated Mass Timber Construction (EMTC) with nail laminated timber (NLT) and Glulam structural elements. The goal of this test series is to quantify the contribution of NLT mass timber elements to compartment fires and to provide additional data as the technical basis for the amount of exposed mass timber elements to be allowed in EMTC buildings without significantly increasing the fire severity and duration.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Fire Test for Rainscreen Wall System

https://research.thinkwood.com/en/permalink/catalogue373
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Author
Gibbs, Eric
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
Rainscreen
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. This report describes a screening fire test conducted on August 22, 2012 on a rainscreen wall system. The test was based on CAN/ULC-S134-13 [3]. However, the dimensions of the test wall (2.4 m wide by 4.9 m high) were less than those required for the standard test conducted in accordance with CAN/ULC-S134.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Full-Scale Standard Fire Test for Exterior Wall Assembly using a Simulated Cross-Laminated Timber Wall Assembly with Gypsum Sheathing

https://research.thinkwood.com/en/permalink/catalogue10
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Taber, Bruce
Gibbs, Eric
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Fire
Keywords
Gypsum
Mid-Rise
Testing
Exterior Walls
Full-Scale
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. This report describes a standard full-scale exterior wall fire test conducted on May 22, 2012 on a simulated cross-laminated timber (CLT) wall assembly with an attached insulated lightweight wood frame assembly protected using gypsum sheathing. The test was conducted in accordance with CAN/ULC-S134.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Full-Scale Standard Fire Test for Exterior Wall Assembly Using a Simulated Cross-Laminated Timber Wall Assembly with Interior Fire-Retardant-Treated Plywood Sheathing

https://research.thinkwood.com/en/permalink/catalogue743
Year of Publication
2014
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Gibbs, Eric
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Design and Systems
Fire
Keywords
Mid-Rise
Exterior Wall
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. This report describes a standard full-scale exterior wall fire test conducted on October 30, 2012 on a simulated cross-laminated timber (CLT) wall assembly with an attached insulated lightweight wood frame assembly protected using interior fire-retardant-treated (FRT) plywood sheathing. The test was conducted in accordance with CAN/ULC-S134.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Full-Scale Standard Fire Test for Exterior Wall Assembly using Lightweight Wood Frame Construction with Interior Fire-Retardant-Treated Plywood Sheathing

https://research.thinkwood.com/en/permalink/catalogue348
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Gibbs, Eric
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
Exterior Wall
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. This report describes a standard full-scale exterior wall fire test conducted on April 9, 2013 on an insulated lightweight wood frame wall assembly protected using interior fire-retardant-treated (FRT) plywood sheathing. The test was conducted in accordance with CAN/ULC-S134-13.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Full-Scale Standard Fire Test for Exterior Wall Assembly Using Lightweight Wood Frame Construction wth Gypsum Sheathing

https://research.thinkwood.com/en/permalink/catalogue374
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gibbs, Eric
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Keywords
Mid-Rise
Full Scale
Exterior Wall
Type X Gypsum Board
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. This report describes a standard full-scale exterior wall fire test conducted on March 6, 2012 on an insulated lightweight wood frame wall assembly protected using gypsum sheathing. The test was conducted in accordance with CAN/ULC-S134-13.
Online Access
Free
Resource Link
Less detail

Water Mist Systems for Protection of Mass Timber Structures - Phase 2 Residential Fire Suppression Tests

https://research.thinkwood.com/en/permalink/catalogue2682
Year of Publication
2020
Topic
Fire
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Author
Ko, Yoon
Elsagan, Nour
Gibbs, Eric
Publisher
National Research Council Canada
Year of Publication
2020
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Topic
Fire
Moisture
Keywords
Sprinklers
Water Mist Systems
Fire Suppression
Research Status
Complete
Summary
"As an alternative option to conventional sprinkler system, water mist systems are considered for the protection of timber buildings because they use much less amounts of water compared to sprinkler systems. The effectiveness of high pressure water mist (HPWM) and low pressure water mist (LPWM) systems was investigated in comparison to sprinkler systems for a residential fire scenario involving mass timber structures. The most distinct characteristic of the HPWM and LPWM systems was fine water droplets generated from the nozzles, which demonstrated effective smoke cooling in the room. Although the water spray rate of the HPWM was four times lower than that of the sprinkler system, the water mist systems effectively control the fire and maintained the room tenable. Most systems (HPWM, LPWM and sprinklers) tested in this study did not prevent fire damage on the CLT walls, but the HPWM system with a wide spray angle demonstrated rapid fire suppression and protection of the CLT walls. In all tests, a large water pool formed on the floor, which appeared proportional to the total water spray discharge in each test, and the moisture contents measured on the surface and bottom edges of the CLT panels indicated that water can penetrate into the interface between the floor and the wall in a typical CLT assembly"--Executive summary, page 1.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.