Skip header and navigation

6 records – page 1 of 1.

Long-term Performance of Timber Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue2081
Year of Publication
2018
Topic
Serviceability
Mechanical Properties
Acoustics and Vibration
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Floors

Performance of Timber-Concrete Composite Floors Using Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue1618
Year of Publication
2016
Topic
Mechanical Properties
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Gerber, Adam
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Mechanical Properties
Keywords
Strength
Stiffness
Small Scale
Shear Tests
Elastic Stiffness
Quasi-Static
Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2397-2406
Summary
Timber-Concrete Composite (TCC) systems are comprised of a timber element connected to a concrete slab through a mechanical shear connection. A large number of T-beam configurations currently exist; however, the growing availability of panel-type engineered wood products (EWPs) in North America in combination with a concrete topping has offered designers and engineers greater versatility in terms of architectural expression and structural and building physics performance. The focus of this investigation was to experimentally determine the properties for a range of TCC systems in several EWPs. Strength and stiffness properties were determined for different TCC configurations based on small-scale shear tests. Eighteen floor panels were tested for elastic stiffness under a quasi-static loading protocol and measurements of the dynamic properties were obtained prior to loading to failure. The tests confirmed that calculations according to the -method can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy. Floor capacities were more difficult to predict, however, failure occurred at loads that were between four and ten times serviceability requirements. The research demonstrated that all selected connector configurations produced efficient timber-concrete-composite systems.
Online Access
Free
Resource Link
Less detail

Seismic Performance of Post-Tensioned Moment-Resisting Portal Frames

https://research.thinkwood.com/en/permalink/catalogue1973
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Wood Building Systems

Serviceability Performance of Timber Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue2353
Year of Publication
2019
Topic
Serviceability
Material
Timber-Concrete Composite
Application
Floors
Author
Tannert, Thomas
Mehdi Ebadi, Md
Gerber, Adam
Year of Publication
2019
Country of Publication
Canada
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Serviceability
Keywords
Hybrid
Concrete Slab
Bending
Vibration
Long-term Performance
Stiffness
Language
English
Research Status
Complete
Series
Modular and Offsite Construction (MOC)
Notes
DOI: https://doi.org/10.29173/mocs95
Online Access
Free
Resource Link
Less detail

Timber-Concrete Composite Connectors in Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue1275
Year of Publication
2016
Topic
Acoustics and Vibration
Mechanical Properties
Connections
Material
Timber-Concrete Composite
Application
Floors
Author
Gerber, Adam
Organization
University of British Columbia
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Mechanical Properties
Connections
Keywords
Strength
Stiffness
Shear Tests
Bending Tests
Vibration Tests
Dynamic Properties
Finite Element Model
Language
English
Research Status
Complete
Summary
Timber-Concrete Composite (TCC) systems are comprised of a timber element connected to a concrete slab through a mechanical shear connection. When TCC are used as flexural elements, the concrete and timber are located in compression and tension zones, respectively. A large number of precedents for T-beam configurations exist; however, the growing availability of flat plate engineered wood products (EWPs) in North America in combination with a concrete topping has offered designers and engineers greater versatility in terms of architectural expression and structural and building physics performance. The focus of this investigation was to experimentally determine the properties for a range of proprietary, open source, and novel TCC systems in several Canadian EWPs. Strength and stiffness properties were determined for 45 different TCC configurations based on over 300 small-scale shear tests. Nine connector configurations were selected for implementation in full-scale bending and vibration tests. Eighteen floor panels were tested for elastic stiffness under a quasi-static loading protocol and measurements of the dynamic properties were obtained prior to loading to failure. The tests confirmed that both hand calculations according to the -method and more detailed FEM models can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy; floor capacities were more difficult to predict, however, failure did usually not occur until loading reached 10 times serviceability requirements. The research demonstrated that all selected connector configurations produced efficient timber-concrete-composite systems.
Online Access
Free
Resource Link
Less detail

Timber-Concrete Composites Using Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue616
Year of Publication
2015
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Gerber, Adam
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Connections
Keywords
Concrete Topping
Mid-Scale
Push-Out Tests
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
Timber-Concrete Composite (TCC) systems have been employed as an efficient solution in medium span structural applications; their use remains largely confined to European countries. TCC systems are generally comprised of a timber and concrete element with a shear connection between. A large number of precedents for T-beam configurations exist; however, the growing availability of flat plate engineered wood products (EWPs) in North America has offered designers greater versatility in terms of floor plans and architectural expression in modern timber and hybrid structures. The opportunity exists to enhance the strength, stiffness, fire, and vibration performance of floors using these products by introducing a concrete topping, connected to the timber to form a composite. A research program at the University of British Columbia Vancouver investigates the performance of five different connector types (a post-installed screw system, cast-in screws, glued-in steel mesh, adhesive bonded, and mechanical interlocking) in three different EWPs (Cross-Laminated-Timber, Laminated-Veneer-Lumber, and Laminated-Strand-Lumber). Over 200 mid-scale push-out tests were performed in the first stage of experimental work to evaluate the connector performance and to optimize the design of subsequent vibration and bending testing of full-scale specimens, including specimens subjected to long-term loading.
Online Access
Payment Required
Resource Link
Less detail

6 records – page 1 of 1.