Timber-concrete-composite (TCC) floors, composed of timber and concrete layers connected by a shear connector are a successful example of hybrid structural components and are commonly used in practical applications.The connection of the two components is usually achieved with mechanical fasteners where relative slip cannot be prevented and the connection cannot be considered rigid. The growing availability of panel-type engineered wood products (EWPs) offers versatility in terms of architectural expression and structural and building physics performance. Preceding research determined the properties for a range of TCC connector systems in several EWPs using full-scale short-term bending tests. In the research presented herein, nine TCC floor segments (one specimens of each previously investigated configuration) were exposed to serviceability loads for approximately 2.5 years. During this time, the environmental conditions and the deflections of each floor were monitored. After having been long-term loaded, the floor segments were tested to failure. The results show an increase of deflection over time but neither bending stiffness,load-carrying capacity nor vibration performance were impacted by the long-term loading. This research provides input data to develop design guidance for TCC floors.
Timber-Concrete Composite (TCC) systems are comprised of a timber element connected to a concrete slab through a mechanical shear connection. A large number of T-beam configurations currently exist; however, the growing availability of panel-type engineered wood products (EWPs) in North America in combination with a concrete topping has offered designers and engineers greater versatility in terms of architectural expression and structural and building physics performance. The focus of this investigation was to experimentally determine the properties for a range of TCC systems in several EWPs. Strength and stiffness properties were determined for different TCC configurations based on small-scale shear tests. Eighteen floor panels were tested for elastic stiffness under a quasi-static loading protocol and measurements of the dynamic properties were obtained prior to loading to failure. The tests confirmed that calculations according to the -method can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy. Floor capacities were more difficult to predict, however, failure occurred at loads that were between four and ten times serviceability requirements. The research demonstrated that all selected connector configurations produced efficient timber-concrete-composite systems.
Glulam-based post-tensioned moment-resisting portal frames were developed by a producer from British Columbia in collaboration with ASPECT Structural Engineers. These modular frames, manufactured from appearance-grade glulam, can be viable solutions for substitution of steel moment frames in predominantly wood-framed buildings. This paper presents an experimental study on the structural performance of post-tensioned glulam moment-resisting portal frames under in-plane lateral loads. A total of twelve frame specimens in four different configurations were tested under static or reversed cyclic loads. The test results show that the behaviour of post-tensioned moment-resisting portal frames was relatively similar under static and cyclic loading, in which non-linear elastic behaviour was observed due to the post-tensioning. The peak lateral loads applied to the tested post-tensioned frames was in a range of 34.1 kN to 61.7 kN and the lateral stiffness ranged from 0.53 kN/mm to 2.65 kN/mm, respectively. Depending of the frame configuration, typical failure modes identified during the testing consisted of a combination of either (i) compression perpendicular to grain failure at the columns on the side in contact with the beam; or (ii) compression perpendicular to grain failure at the beam on the side in contact with the columns; and (iii) screw failure in the column-to-base joints (if present). The tests give a valuable insight into the seismic performance of post-tensioned glulam moment-resisting portal frames.
Timber-Concrete Composite (TCC) systems are comprised of a timber element connected to a concrete slab through a mechanical shear connection. When TCC are used as flexural elements, the concrete and timber are located in compression and tension zones, respectively. A large number of precedents for T-beam configurations exist; however, the growing availability of flat plate engineered wood products (EWPs) in North America in combination with a concrete topping has offered designers and engineers greater versatility in terms of architectural expression and structural and building physics performance. The focus of this investigation was to experimentally determine the properties for a range of proprietary, open source, and novel TCC systems in several Canadian EWPs. Strength and stiffness properties were determined for 45 different TCC configurations based on over 300 small-scale shear tests. Nine connector configurations were selected for implementation in full-scale bending and vibration tests. Eighteen floor panels were tested for elastic stiffness under a quasi-static loading protocol and measurements of the dynamic properties were obtained prior to loading to failure. The tests confirmed that both hand calculations according to the -method and more detailed FEM models can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy; floor capacities were more difficult to predict, however, failure did usually not occur until loading reached 10 times serviceability requirements. The research demonstrated that all selected connector configurations produced efficient timber-concrete-composite systems.
Timber-Concrete Composite (TCC) systems have been employed as an efficient solution in medium span structural applications; their use remains largely confined to European countries. TCC systems are generally comprised of a timber and concrete element with a shear connection between. A large number of precedents for T-beam configurations exist; however, the growing availability of flat plate engineered wood products (EWPs) in North America has offered designers greater versatility in terms of floor plans and architectural expression in modern timber and hybrid structures. The opportunity exists to enhance the strength, stiffness, fire, and vibration performance of floors using these products by introducing a concrete topping, connected to the timber to form a composite. A research program at the University of British Columbia Vancouver investigates the performance of five different connector types (a post-installed screw system, cast-in screws, glued-in steel mesh, adhesive bonded, and mechanical interlocking) in three different EWPs (Cross-Laminated-Timber, Laminated-Veneer-Lumber, and Laminated-Strand-Lumber). Over 200 mid-scale push-out tests were performed in the first stage of experimental work to evaluate the connector performance and to optimize the design of subsequent vibration and bending testing of full-scale specimens, including specimens subjected to long-term loading.