Skip header and navigation

8 records – page 1 of 1.

Design Models for CLT Shearwalls and Assemblies Based on Connection Properties

https://research.thinkwood.com/en/permalink/catalogue369
Year of Publication
2014
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Popovski, Marjan
Gavric, Igor
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Keywords
Lateral Loads
Analytical Model
North America
Europe
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. As currently there are no standardized methods for determining the resistance of CLT shearwalls under lateral loads, the design approaches are left at the descretion of the designers. The most common approach that is currently used in Europe and North America assumes that the resistance of CLT walls is a simple summary of the shear resistance of all connectors at the bottom of the wall. In this report some new analytical models for predicting the design (factored) resistance of CLT walls under lateral loads were developed based on connection properties. These new models were then evaluated for their consistency along with their models that are currently used in North America and in Europe.
Online Access
Free
Resource Link
Less detail

Dynamic Response of Tall Timber Buildings Under Service Load - The DynaTTB Research Program

https://research.thinkwood.com/en/permalink/catalogue3015
Year of Publication
2020
Topic
Acoustics and Vibration
Application
Wood Building Systems
Author
Abrahamsen, Rune
Bjertnæs, Magne
Bouillot, Jacques
Brank, Bostjan
Cabaton, Lionel
Crocetti, Roberto
Flamand, Olivier
Garains, Fabien
Gavric, Igor
Germain, Olivier
Hahusseau, Ludwig
Hameury, Stephane
Johansson, Marie
Johansson, Thomas
Ao, Wai Kei
Kurent, Blaž
Landel, Pierre
Linderholt, Andreas
Malo, Kjell
Manthey, Manuel
Nåvik, Petter
Pavic, Alex
Perez, Fernando
Rönnquist, Anders
Stamatopoulos, Haris
Sustersic, Iztok
Tulebekova, Saule
Organization
Norwegian University of Science and Technology
University of Exeter
University of Ljubljana
Linnaeus University
Year of Publication
2020
Format
Conference Paper
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Timber Building
Wind Load
Discomfort
Modelling
Damping
Full Scale
Conference
International Conference on Structural Dynamics
Research Status
Complete
Summary
Wind-induced dynamic excitation is becoming a governing design action determining size and shape of modern Tall Timber Buildings (TTBs). The wind actions generate dynamic loading, causing discomfort or annoyance for occupants due to the perceived horizontal sway – i.e. vibration serviceability failure. Although some TTBs have been instrumented and measured to estimate their key dynamic properties (natural frequencies and damping), no systematic evaluation of dynamic performance pertinent to wind loading has been performed for the new and evolving construction technology used in TTBs. The DynaTTB project, funded by the Forest Value research program, mixes on site measurements on existing buildings excited by heavy shakers, for identification of the structural system, with laboratory identification of building elements mechanical features coupled with numerical modelling of timber structures. The goal is to identify and quantify the causes of vibration energy dissipation in modern TTBs and provide key elements to FE modelers. The first building, from a list of 8, was modelled and tested at full scale in December 2019. Some results are presented in this paper. Four other buildings will be modelled and tested in spring 2021.
Online Access
Free
Resource Link
Less detail

Experimental-Numerical Analyses of the Seismic Behaviour of Cross-Laminated Wall Systems

https://research.thinkwood.com/en/permalink/catalogue56
Year of Publication
2012
Topic
Seismic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gavric, Igor
Rinaldin, Giovanni
Amadio, Claudio
Fragiacomo, Massimo
Ceccotti, Ario
Year of Publication
2012
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Energy Performance
Keywords
Finite Element Model
Abaqus
Experimental
Numerical
Full Scale
Cyclic Testing
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
Summary
The paper discusses experimental and numerical seismic analyses of typical connections and wall systems used in cross-laminated (X-Lam) timber buildings. An extended experimental programme on typical X-Lam connections was performed at IVALSA Trees and Timber Institute. In addition, cyclic tests were also carried out on full-scale single and coupled X-Lam wall panels with different configurations and mechanical connectors subjected to lateral force. An advanced non-linear hysteretic spring to describe accurately the cyclic behaviour of connections was implemented in ABAQUS finite element software package as an external subroutine. The FE model with the springs calibrated on single connection tests was then used to reproduce numerically the behaviour of X-Lam wall panels, and the results were compared with the outcomes of experimental full-scale tests carried out at IVALSA. The developed model is suitable for evaluating dissipated energy and seismic vulnerability of X-Lam structures.
Online Access
Free
Resource Link
Less detail

Hybrid Cross Laminated Timber Plates (HCLTP) – Numerical Optimisation Modelling and Experimental Tests

https://research.thinkwood.com/en/permalink/catalogue1751
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Sustersic, Iztok
Brank, Boštjan
Dujic, Bruno
Brezocnik, Jaka
Gavric, Igor
Aicher, Simon
Dill-Langer, Gerhard
Winter, Wolfgang
Fadai, Alireza
Demschner, Thomas
Ledinek, Gregor
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Timber Ribs
Concrete Topping
Ultimate Limit States
Serviceability Limit States
Numerical Modelling
Experimental Tests
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4989-4996
Summary
This paper presents the development of two new types of hybrid cross-laminated timber plates (HCLTP) with an aim to improve structural performance of existing cross-laminated timber plates (Xlam or CLT). The first type are Xlam plates with glued timber ribs and the second type are Xlam plates with a concrete topping. A numerical...
Online Access
Free
Resource Link
Less detail

Mechanical performance of timber connections made of thick flexible polyurethane adhesives

https://research.thinkwood.com/en/permalink/catalogue3130
Year of Publication
2021
Topic
Connections
Author
Pecnik, Jaka Gašper
Gavric, Igor
Sebera, Václav
Kržan, Meta
Kwiecien, Arkadiusz
Zajac, Boguslaw
Azinovic, Boris
Organization
University of Primorska
Slovenian National Building and Civil Engineering Institute
Cracow University of Technology
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Topic
Connections
Keywords
Flexible Adhesive
Timber Connection
Polyurethane
Double Lap-shear
Cyclic Loading
Energy Dissipation
Research Status
Complete
Series
Engineering Structures
Summary
This study investigates timber connections with flexible polyurethane adhesives, which prove to have the potential for timber-adhesive composite structures without mechanical connections for seismic regions. Results of conducted cyclic double lap-shear adhesive timber joints tests were compared with available experimental results on timber connections with standard mechanical dowel-type fasteners and with results of numerical finite element analysis. The study found that the shear strength, elastic stiffness and strength degradation capacity of the flexible adhesive connections were significantly higher compared to mechanical fasteners commonly used in seismic-resistant timber connections. The latter, however, manifested larger ultimate displacements but also yielded at lower displacements.
Online Access
Free
Resource Link
Less detail

On the distribution of internal forces in single-storey CLT symmetric shear-walls with openings

https://research.thinkwood.com/en/permalink/catalogue2850
Year of Publication
2021
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Casagrande, Daniele
Fanti, Riccardo
Greco, Marco
Gavric, Igor
Polastri, Andrea
Organization
Institute of Bioeconomy - National Research Council of Italy
University of Trento
University of Primorska
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
Shear Walls
Openings
Stress Distribution
Finite Element Modeling
Research Status
Complete
Series
Structures
Summary
This paper presents a numerical and analytical study on single-storey cross-laminated timber (CLT) shear-walls with openings subjected to lateral loads. The main objective was to investigate the location and distribution of maximum values of axial and shear forces in relevant wall sections. The influence of parameters such as wall geometry (different sizes of wall openings, door openings, lintel/parapet lengths and heights, wall thickness) and different stiffness levels of mechanical anchors for CLT wall connection with floor/foundation were studied. Finite element (FE) parametric analyses were performed on a set of single-storey CLT shear-walls with door and window openings and were compared with analytical models for determination of internal forces. The importance of wall connections’ flexibility was identified, as the distribution of internal forces in walls with rigid and flexible anchors were considerably different. The obtained outcomes of this study provide a solid base for the next step, an experimental investigation of in-plane internal force distribution in CLT walls with openings, which will serve for further development of numerical, analytical and design approaches.
Online Access
Free
Resource Link
Less detail

Performance of Two-Storey CLT House Subjected to Lateral Loads

https://research.thinkwood.com/en/permalink/catalogue376
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Popovski, Marjan
Gavric, Igor
Schneider, Johannes
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
Lateral Loads
North America
Building Codes
Full Scale
Quasi-Static
Monotonic Loading
Cyclic Loading
Failure Mechanism
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. A two storey full-scale model of a CLT house was tested under quasi-static monotonic and cyclic lateral loading in two directions, one direction at a time. In total five tests were performed; one push-over and two cyclic tests were conducted in the longer symmetrical direction (E-W), and two cyclic tests were performed in the shorter asymmetrical direction (N-S). In addition, before and after each test, natural frequencies of the house in both directions were measured. The main objective of the tests was to investigate 3-D system behaviour of the CLT structure subjected to lateral loads. The CLT structure subjected to lateral loads performed according to the design objectives.
Online Access
Free
Resource Link
Less detail

Seismic Design of Timber Buildings: Highlighted Challenges and Future Trends

https://research.thinkwood.com/en/permalink/catalogue2388
Year of Publication
2020
Topic
Design and Systems
Seismic
Application
Wood Building Systems
Author
Stepinac, Mislav
Šušteršic, Iztok
Gavric, Igor
Rajcic, Vlatka
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Seismic Design
Tall Timber Buildings
Timber Composites
Seismic Retrofitting
Eurocode 8
Research Status
Complete
Series
Applied Sciences
Summary
Use of timber as a construction material has entered a period of renaissance since the development of high-performance engineered wood products, enabling larger and taller buildings to be built. In addition, due to substantial contribution of the building sector to global energy use, greenhouse gas emissions and waste production, sustainable solutions are needed, for which timber has shown a great potential as a sustainable, resilient and renewable building alternative, not only for single family homes but also for mid-rise and high-rise buildings. Both recent technological developments in timber engineering and exponentially increased use of engineered wood products and wood composites reflect in deficiency of current timber codes and standards. This paper presents an overview of some of the current challenges and emerging trends in the field of seismic design of timber buildings. Currently existing building codes and the development of new generation of European building codes are presented. Ongoing studies on a variety topics within seismic timber engineering are presented, including tall timber and hybrid buildings, composites with timber and seismic retrofitting with timber. Crucial challenges, key research needs and opportunities are addressed and critically discussed.
Online Access
Free
Resource Link
Less detail

8 records – page 1 of 1.