Skip header and navigation

7 records – page 1 of 1.

Compression Perpendicular to Grain Behavior for the Design of a Prefabricated CLT Facade Horizontal Joint

https://research.thinkwood.com/en/permalink/catalogue1540
Year of Publication
2016
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Author
Gasparri, Eugenia
Lam, Frank
Liu, Yingyang
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Connections
Design and Systems
Keywords
Envelope
Joints
Self-Tapping Screws
Finite Element Analysis
Prefabricated
Vertical Loads
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1088-1098
Summary
The present work aims to define horizontal joint dimension tolerances for newly proposed prefabricated façade systems for applications in tall cross laminated timber (CLT) buildings based on the compression perpendicular to grain characteristics of the component. This requires a thorough understanding of structural settlement under vertical loads which can vary at each floor height. An experimental program has been carried out with reference to the case of a platform frame building construction, where major perpendicular to grain compression of the floor can occur under high loads. Five-layer CLT specimens have been tested under compression via the application of a line load with steel plate as well as actual CLT wall specimens. Strengthening contribution using full threaded self-tapping wood screws has also been investigated. Results of deformation characteristics have been validated through a non-linear finite element analysis and further elaborated in order to outline implications in the design of a prefabricated façade.
Online Access
Free
Resource Link
Less detail

Construction Management for Tall CLT Buildings: From Partial to Total Prefabrication of Façade Elements

https://research.thinkwood.com/en/permalink/catalogue224
Year of Publication
2015
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gasparri, Eugenia
Lucchini, Angelo
Mantegazza, Gabriele
Mazzucchelli, Enrico
Publisher
Taylor&Francis Online
Year of Publication
2015
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Cost
Design and Systems
Keywords
High-Rise
Prefabrication
Tall Wood
Research Status
Complete
Series
Wood Material Science & Engineering
Notes
http://dx.doi.org/10.1080/17480272.2015.1075589
Summary
Cross-Laminated Timber is one of the most widely used engineered wood products, thanks to its numerous advantages, among which construction speed is the most appreciated, both by clients and by designers. However, construction scheduling compression refers exclusively to CLT structures, while the rest of the construction process still requires a longer phase to complete vertical enclosures. The aim of the research work presented in this paper is to outline advantages brought about when the degree of envelope prefabrication of tall timber buildings is increased. Results are presented in two sections. The first includes the definition of a case study together with an overview of possible technical details for entirely prefabricated façade solutions, ready to be installed without the need to work via scaffolds. The second deals with construction site management analysis for the case study building, where the determination of specific factors having an influence on time and costs is achieved by varying the prefabrication degree of the various façade configurations and repeating the analysis process. The main findings of this research work demonstrate that comprehensive façade prefabrication allows not only consistent compression of construction scheduling to be achieved, but also for immediate protection of wooden elements from weather agents.
Online Access
Free
Resource Link
Less detail

Hygrothermal Analysis of Timber-Based External Walls Across Different Australian Climate Zones

https://research.thinkwood.com/en/permalink/catalogue2071
Year of Publication
2018
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Gasparri, Eugenia
Brambilla, Arianna
Aitchison, Mathew
Organization
University of Sydney
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Keywords
Hygrothermal Performance
Australia
Climate Zones
Mould
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The aim of this work is to examine the hygrothermal performance of timber-based envelopes across Australia. The heat and moisture (HAM) analyses are performed with consideration of various climatic conditions for all major Australian cities including: Darwin (zone 1); Brisbane (zone 2); Sydney (zone 5); Melbourne (zone 6); and Canberra (zone 7). Two main typical wall sections are selected for investigation, a massive CLT wall type with an external insulation layer and a cavity-insulated timber frame wall. The transient hygrothermal behaviour and mould growth risk assessments are simulated with WUFI software. The study shows how emerging construction practices perform poorly with respect to HAM transfer, particularly in hot and humid climatic contexts during the cooling season.Critical configurations are identified and design alternatives suggested so to prevent material damage, guarantee durable wood structures and maintain indoor environment healthiness.
Online Access
Free
Resource Link
Less detail

Market Survey of Timber Prefabricated Envelopes for New and Existing Buildings

https://research.thinkwood.com/en/permalink/catalogue2198
Year of Publication
2019
Topic
Design and Systems
Application
Building Envelope

Mass Timber Envelopes in Passivhaus Buildings: Designing for Moisture Safety in Hot and Humid Australian Climates

https://research.thinkwood.com/en/permalink/catalogue2840
Year of Publication
2021
Topic
Moisture
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Strang, Marcus
Leardini, Paola
Brambilla, Arianna
Gasparri, Eugenia
Organization
University of Queensland
University of Sydney
Editor
Medved, Sergej
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Energy Performance
Keywords
Hygrothermal
Moisture Safety
Durability
Passive House
Envelope
Research Status
Complete
Series
Buildings
Summary
The uptake of buildings employing cross-laminated timber (CLT) assemblies and designed to Passivhaus standard has accelerated internationally over the past two decades due to several factors including responses to the climate crisis by decarbonising the building stock. Structural CLT technology and the Passivhaus certification both show measurable benefits in reducing energy consumption, while contributing to durability and indoor comfort. However, there is a general lack of evidence to support a fast uptake of these technologies in Australia. This paper responds to the compelling need of providing quantitative data and adoption strategies; it explores their combined application as a potential pathway for climate-appropriate design of energy-efficient and durable mass timber envelope solutions for subtropical and tropical Australian climates. Hygrothermal risk assessments of interstitial condensation and mould growth of CLT wall assemblies inform best-practice design of mass timber buildings in hot and humid climates. This research found that the durability of mass timber buildings located in hot and humid climates may benefit from implementing the Passivhaus standard to manage interior conditions. The findings also suggested that climate-specific design of the wall assembly is critical for mass timber buildings, in conjunction with excellent stormwater management practices during construction and corrosion protection for metallic fasteners.
Online Access
Free
Resource Link
Less detail

Mould Growth Models and Risk Assessment for Emerging Timber Envelopes in Australia: A Comparative Study

https://research.thinkwood.com/en/permalink/catalogue2898
Year of Publication
2021
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Brambilla, Arianna
Gasparri, Eugenia
Organization
The University of Sydney
Editor
Medved, Sergej
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Keywords
Hygrothermal Performance
Condensation
Mould Growth Risk
WUFI
Mass Timber
Australian Climate
Research Status
Complete
Series
Buildings
Summary
Timber envelopes provide multiple benefits in reducing both operational and embodied energy environmental impacts in construction. However, when poorly designed, they may incur in high risk of mould growth, affecting both building performance and occupant’s wellbeing. This research investigates the risk of mould growth associated with emerging timber envelopes in Australia, particularly looking at mass-timber and timber-framed wall typologies. The study compares the use of two mould growth assessment models: the VTT and the IBP biohygrothermal. Results provide relevant insights on both current design approaches and performance assessment methodologies. Whilst the study is based on Australian practice, conclusions have international relevance and applicability.
Online Access
Free
Resource Link
Less detail

Prefabricated CLT Facade Systems for Fast-Track Construction and Quality Assurance

https://research.thinkwood.com/en/permalink/catalogue1630
Year of Publication
2016
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Gasparri, Eugenia
Giunta, Giorgio
Mazzucchelli, Enrico
Lucchini, Angelo
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Keywords
Off-site Prefabrication
Construction
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2886-2894
Summary
Prefabrication of timber envelope components is a constantly developing research field, which attracts interest from various sectors of expertise thanks to the conspicuous advantages it can confer in terms of resources savings, as well as quality management and safety for all actors involved in the process. The present paper goes through the design of a newly conceived external wall system for tall CLT buildings, entirely preassembled off-site and so able to be installed on his final position via crane, renouncing to scaffolds for the façade completion. This not only allows for the construction phase to speed up but also for immediate protection of loadbearing timber elements from weather agents exposure. The work follows three main phases: the functional analysis and layer definition, component design through bi-dimensional study of joint operating mechanism and tri-dimensional validation of the system. Main author findings outline how success of prefabricated systems and their durability over service life is strongly dependent on the effectiveness of joint design.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.