Skip header and navigation

2 records – page 1 of 1.

Case Study: An 18 Storey Tall Mass Timber Hybrid Student Residence at the University of British Columbia, Vancouver

https://research.thinkwood.com/en/permalink/catalogue2120
Year of Publication
2016
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Fast, Paul
Gafner, Bernhard
Jackson, Robert
Li, Jimmy
Year of Publication
2016
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Tall Wood
Mass Timber
Rolling Shear
Prefabrication
Damping
Tolerances
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
This article outlines the structural design approach used for the Brock Commons Student Residence project, an 18-storey wood building at the University of British Columbia in Vancouver, Canada. When completed in summer 2017, it will be the tallest mass timber hybrid building in the world at 53 meters high. Fast + Epp are the structural engineers, working in conjunction with Acton Ostry Architects and Hermann Kaufmann Architekten. Total project costs, inclusive of fees, permits etc. are $51.5M CAD.
Online Access
Free
Resource Link
Less detail

Structural Behaviour of Point-Supported CLT Floor Systems

https://research.thinkwood.com/en/permalink/catalogue1476
Year of Publication
2016
Topic
Mechanical Properties
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Popovski, Marjan
Chen, Zhiyong
Gafner, Bernhard
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Mechanical Properties
Acoustics and Vibration
Keywords
Brock Commons
Natural Frequency
Stiffness
Deformation
Load Carrying Capacity
Two-Way
Compression
Failure Mechanisms
Openings
Point-Supported
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
This paper presents an experimental investigation of the structural behaviour and dynamic characteristics of an innovative, double-span, point-supported Cross Laminated Timber (CLT) floor system for an 18-stroey woodhybrid student residence building at the University of British Columbia Campus in Vancouver, Canada. Eighteen CLT floor specimens with or without service openings were fabricated by three manufacturers and tested. The fundamental natural frequency, stiffness and deformability, load-carrying capacity, two-way action, compression perpendicular to grain at the supports, and the failure mechanism of the floor systems were investigated. In addition, the effect of openings in the floors was investigated along with the manufacturer-related properties of the CLT floors were examined. The tests gave an insight into the structural behaviour of this innovative floor system, provided test data that was used for calibration of the Finite Element Models of the building, and helped choose the right product for the floors.
Online Access
Free
Resource Link
Less detail