Skip header and navigation

7 records – page 1 of 1.

Failure Modes and Reinforcement Techniques for Timber Beams – State of the Art

https://research.thinkwood.com/en/permalink/catalogue11
Year of Publication
2015
Topic
Serviceability
Material
Solid-sawn Heavy Timber
Application
Beams
Author
Harte, Annette
Franke, Bettina
Franke, Steffen
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
Solid-sawn Heavy Timber
Application
Beams
Topic
Serviceability
Keywords
Damage
Deterioration
Failure
Fasteners
Large Span
Loading
Reinforcement
Retrofit
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
Highly loaded and large span timber beams are often used for halls, public buildings or bridges. Reinforcement of beams may be required to extend the life of the structure, due to deterioration or damage to the material/product or change of use. The paper summarises methods to repair or enhance the structural performance of timber beams. The main materials/products cross sections and geometries used for timber beam are presented. Furthermore, their general failure modes are described and typical retrofitting and reinforcement techniques are given. The techniques include wood to wood replacements, use of mechanical fasteners and additional strengthening materials/products.
Online Access
Free
Resource Link
Less detail

Investigation on Elements Presenting Cracks in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue477
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Franke, Steffen
Magnière, Noëlie
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Cracks
Numerical Model
Stiffness
Load Carrying Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Cracks in timber members influence the stiffness and load-carrying behaviour but only rudimentary rules are given to evaluate cracked members. Therefore, an investigation to gather information about the most frequent characteristics of cracked timber structures has been carried out. This investigation provides the main characteristics of both the timber elements and the crack distributions encountered. These main characteristics have then been used to define a numerical model in order to investigate the impact of cracks on the stiffness and load-carrying capacity of timber beams. Based on these results, the existing rules considering cracks in timber beams can be evaluated and new rules can be developed.
Online Access
Free
Resource Link
Less detail

Load Carrying Capacity of Cracked Beams

https://research.thinkwood.com/en/permalink/catalogue1544
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Franke, Steffen
Franke, Bettina
Magnière, Noëlie
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Cracks
Stiffness
Modulus of Elasticity
Load Carrying Capacity
Numerical Investigations
Experimental Investigations
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1123-1130
Summary
The increasing number of wood structure amongst large and potentially public buildings gave a new impulse to the assessment of timber structures. For assessing the state of timber elements, cracks are a key indicator. Therefore, experimental and numerical investigations on not cracked and partly cracked timber members were carried out and analysed. The results show no influence on the stiffness and modulus of elasticity for partly cracked beams. The experimental results were used for the development of analytical and validation the numerical solutions for the assessment of the residual load carrying capacity of cracked timber members. Several models predicting the residual load carrying capacity depending on the crack situation are presented.
Online Access
Free
Resource Link
Less detail

Long Term Monitoring of Timber Bridges - Assessment and Results

https://research.thinkwood.com/en/permalink/catalogue2124
Year of Publication
2013
Topic
Moisture
Serviceability
Application
Bridges and Spans
Author
Franke, Bettina
Franke, Steffen
Müller, Andreas
Vogel, Mareike
Scharmacher, Florian
Tannert, Thomas
Publisher
Trans Tech Publications
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Application
Bridges and Spans
Topic
Moisture
Serviceability
Keywords
Monitoring
Bridge
Moisture Content
Climate
Language
English
Research Status
Complete
Series
Advanced Materials Research
Online Access
Free
Resource Link
Less detail

Mechanical Properties of Beech CLT

https://research.thinkwood.com/en/permalink/catalogue1526
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Franke, Steffen
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Beech
Strength
Stiffness
Delamination Tests
Rolling Shear Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 660-666
Summary
The use of relatively new constructions products like Cross laminated timber (CLT) is increasing significantly. It is planned to extend the production of CLT by producing them out of beech or of beech and spruce in combination as hybrid product. The objective is to provide high performing materials which compensate weak points in soft wood products. In order to use and implement the product, the mechanical behaviour of a CLT plate of beech were investigated. The potential of beech is shown in terms of known strength values. Experimental tests for the evaluation of the strength and stiffness values for beech CLT for different situations as well as delamination tests were performed. Failure cases of the mechanical tests are presented and discussed where the rolling shear failure was in major focus for the discussion.
Online Access
Free
Resource Link
Less detail

Timber Structures 3.0 - New Technology for Multi-Axial, Slim, High Performance Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1557
Year of Publication
2016
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zöllig, Stefan
Frangi, Andrea
Franke, Steffen
Muster, Marcel
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Design and Systems
Keywords
Butt-Joint
Biaxial Load Bearing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1290-1297
Summary
Until today, all known timber building systems allow only slabs with a uniaxial load bearing action. Thereby, in comparison to normal reinforced concrete slabs, timber slabs are often thick, expensive and complicated to build. The reason for this is that there is no efficient connection technology to rigidly connect timber slab elements to each other. Alternative solutions are hybrid structural systems with concrete or steel, however, this combination of materials results in some disadvantages especially in terms of weight, ecology, construction time and costs. In the framework of a large research project a new timber slab system has been developed and already tested in first real applications. The developed slab system is designed for housing, commercial and industrial buildings. The slab system works as a flat slab carrying vertical loads biaxial and consists of timber slab elements like CLT glued together on site with a high performance butt-joint bonding technology. Research about the central slab element, the butt-joint bonding and fire tests have already been performed. The research showed the feasibility of this innovation. In 2015 a first prototype was built in Thun, Switzerland. A large three year research project started 2016 with the goal to reach market maturity.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.