Skip header and navigation

26 records – page 1 of 3.

An Analytical Model for Design of Reinforcement around Holes in Laminated Veneer Lumber (LVL) Beams

https://research.thinkwood.com/en/permalink/catalogue135
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Ardalany, Manoochehr
Fragiacomo, Massimo
Moss, Peter
Deam, Bruce
Publisher
Springer Netherlands
Year of Publication
2013
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Failure
Glued-In Rods
Model
Reinforcement
Screws
Tensile
Research Status
Complete
Series
Materials and Structures
Summary
Openings are usually required to allow services like plumbing, sewage pipes and electrical wiring to run through beams. This prevents an extra depth of the floor/ceiling, while preserving architectural considerations. The introduction of large opening causes additional tension perpendicular to grain in timber beams. The low tensile strength perpendicular to grain of wood allows crack formation. Crack propagation around the hole considerably decreases the load-carrying capacity of the beam. However, in most cases, crack formation and propagation around the hole can be prevented by the use of an appropriate reinforcement. Screw, glued-in rods, and plywood are alternative options for the reinforcement. Design of the reinforcement requires that the working mechanism of the reinforcement is fully understood and properly addressed. In addition, reinforcement should be designed for actions produced in the section of the beam weakened by the hole. The current paper uses a simple truss model around the opening to calculate the tensile force in the reinforcement. Two simple formulations for design of the reinforcement are derived and compared with numerical and experimental results, showing an overall good correspondence. The proposed truss model can be considered for incorporation in future codes of practice.
Online Access
Free
Resource Link
Less detail

Application of a Translational Tuned Mass Damper Designed by Means of Genetic Algorithms on a Multistory Cross-Laminated Timber Building 

https://research.thinkwood.com/en/permalink/catalogue413
Year of Publication
2015
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Poh’sié, Guillaume
Chisari, Corrado
Rinaldin, Giovanni
Fragiacomo, Massimo
Amadio, Claudio
Ceccotti, Ario
Publisher
American Society of Civil Engineers
Year of Publication
2015
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Translational Tuned Mass Damper
Dynamic Analysis
Multi-Story
Research Status
Complete
Series
Journal of Structural Engineering
Summary
This paper presents a numerical study conducted on a seven-story timber building made of cross-laminated (X-lam) panels, equipped with a linear translational tuned mass damper (TMD). The TMD is placed on the top of the building as a technique for reducing the notoriously high drifts and seismic accelerations of these types of structures. TMD parameters (mass, stiffness, and damping) were designed using a genetic algorithm (GA) technique by optimizing the structural response under seven recorded earthquake ground motions compatible, on average, with a predefined elastic spectrum. Time-history dynamic analyses were carried out on a simplified two-degree-offreedom system equivalent to the multistory building, while a detailed model of the entire building using two-dimensional elastic shell elements and elastic springs for modeling connections was used as a verification of the evaluated solution. Several comparisons between the response of the structure with and without TMD subjected to medium- and high-intensity recorded earthquake ground motions are presented, and the effectiveness and limits of these devices for improving the seismic performance of X-lam buildings are critically evaluated.
Online Access
Free
Resource Link
Less detail

Application of Translational Tuned-Mass Dampers on Seven Storey Building Tested within the SOPHIE Project

https://research.thinkwood.com/en/permalink/catalogue493
Year of Publication
2014
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Poh’sié, Guillaume
Rinaldin, Giovanni
Fragiacomo, Massimo
Amadio, Claudio
Ceccotti, Ario
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
finite element
Abaqus
Tuned Mass Dampers
Cyclic Behaviour
Dynamic Analysis
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The paper presents a numerical study conducted on a seven storey cross-laminated (X-lam) buildings equipped with translational Tuned Mass Dampers (TMD’s), as a technique for reducing the notoriously high drifts and maximum seismic accelerations of these types of structures. The building was modelled in the finite element software package Abaqus using 2D elastic shell elements and non-linear springs, which were implemented as an external user subroutine and properly calibrated to simulate the cyclic behavior of connectors in X-lam buildings. The used TMD device is linear, and placed on the top of the building. Time-history dynamic analyses were carried out under natural earthquake ground motions. Several comparisons between the response of the structure with and without TMD are presented, and the effectiveness and limits of these devices to improve the seismic performance of X-lam buildings are critically discussed.
Online Access
Free
Resource Link
Less detail

Design and Construction of Prestressed Timber Buildings for Seismic Areas

https://research.thinkwood.com/en/permalink/catalogue1847
Year of Publication
2018
Topic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Smith, Tobias
Pampanin, Stefano
Fragiacomo, Massimo
Buchannan, Andy
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Pre-Stressed
Low-Rise
Multi-Storey
Earthquake Resistance
Hybrid Structures
Research Status
Complete
Series
New Zealand Timber Design Journal
Summary
This paper describes the structural design of low-rise multi-storey timber buildings using a new and exciting structural system. This system, originally developed for use with pre-cast concrete, combines un-bonded post-tensioning and additional energy dissipaters, providing a recentering capability after the earthquake, while greatly reducing the structural damage. This new structural system can be used in multi-storey buildings, with large structural timber members made from laminated veneer lumber (LVL) or glulam timber, with lateral loads resisted by prestressed timber frames or walls, separately or in combination. A case study of a six storey timber office building in a moderate seismic area is analysed and a virtual design is carried out, allowing investigation of different methods of structural analysis, and development of many construction and connection details for rapid construction. Total building cost is compared to equivalent steel and reinforced concrete options.
Online Access
Free
Resource Link
Less detail

The Design of a Semi-Prefabricated LVL-Concrete Composite Floor

https://research.thinkwood.com/en/permalink/catalogue103
Year of Publication
2012
Topic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Yeoh, David
Fragiacomo, Massimo
Publisher
Hindawi Publishing Corporation
Year of Publication
2012
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Keywords
Flexural Stiffness Method
Prefabrication
Research Status
Complete
Series
Advances in Civil Engineering
Summary
This paper describes the design of a novel semi-prefabricated LVL-concrete composite floor that has been developed in New Zealand. In this solution, the floor units made from LVL joists and plywood are prefabricated in the factory and transported to the building site. The units are then lifted onto the supports and connected to the main frames of the building and to the adjacent units. Finally, a concrete topping is poured on top of the units in order to form a continuous slab connecting all the units. Rectangular notches cut from the LVL joists and reinforced with coach screws provide the composite action between the concrete slab and the LVL joists. This system proved to be an effective modular solution that ensures rapid construction. A design procedure based on the use of the effective flexural stiffness method, also known as the “gamma method” is proposed for the design of the composite floor at ultimate and serviceability limit states, in the short and long term. By comparison with the experimental results, it is shown that the proposed method leads to conservative design. A step-by-step design worked example of this novel semi-prefabricated composite floor concludes the paper.
Online Access
Free
Resource Link
Less detail

Design of Timber-Concrete Composite Structures

https://research.thinkwood.com/en/permalink/catalogue1936
Year of Publication
2018
Topic
Mechanical Properties
Connections
Serviceability
Design and Systems
Material
Timber-Concrete Composite
Author
Dias, Alfredo
Fragiacomo, Massimo
Gramatikov, Kiril
Kreis, Benjamin
Kupferle, Frank
Monteiro, Sandra
Sandanus, Jaroslav
Schänzlin, Jörg
Schober, Kay-Uwe
Sebastian, Wendel
Sogel, Kristian
Editor
Dias, Alfredo
Schänzlin, Jörg
Dietsch, Philipp
Publisher
COST (European Cooperation in Science and Technology)
Year of Publication
2018
Format
Book/Guide
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Connections
Serviceability
Design and Systems
Keywords
Internal Loads
External Loads
Dowel Type Fastener
Notches
Stiffness
Strength
Ductility
Eurocode 5
Load Carrying Capacity
Research Status
Complete
Summary
The aim of this document is to report the state of the art in terms of research and practice of Timber-Concrete Composite (TCC) systems, in order to summarize the existing knowledge in the single countries and to develop a common understanding of the design of TCC. This report was made within the framework of WG4-Hybrid Structures within COST Action FP1402. It intends to reflect the information and studies available around the world, but especially in Europe through the active contribution and participation of experts from various countries involved in this Action.
Online Access
Free
Resource Link
Less detail

Experimental-Numerical Analyses of the Seismic Behaviour of Cross-Laminated Wall Systems

https://research.thinkwood.com/en/permalink/catalogue56
Year of Publication
2012
Topic
Seismic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gavric, Igor
Rinaldin, Giovanni
Amadio, Claudio
Fragiacomo, Massimo
Ceccotti, Ario
Year of Publication
2012
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Energy Performance
Keywords
Finite Element Model
Abaqus
Experimental
Numerical
Full Scale
Cyclic Testing
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
Summary
The paper discusses experimental and numerical seismic analyses of typical connections and wall systems used in cross-laminated (X-Lam) timber buildings. An extended experimental programme on typical X-Lam connections was performed at IVALSA Trees and Timber Institute. In addition, cyclic tests were also carried out on full-scale single and coupled X-Lam wall panels with different configurations and mechanical connectors subjected to lateral force. An advanced non-linear hysteretic spring to describe accurately the cyclic behaviour of connections was implemented in ABAQUS finite element software package as an external subroutine. The FE model with the springs calibrated on single connection tests was then used to reproduce numerically the behaviour of X-Lam wall panels, and the results were compared with the outcomes of experimental full-scale tests carried out at IVALSA. The developed model is suitable for evaluating dissipated energy and seismic vulnerability of X-Lam structures.
Online Access
Free
Resource Link
Less detail

Experimental Seismic Behavior of a Two-Story CLT Platform Building: Shake Table Testing Results

https://research.thinkwood.com/en/permalink/catalogue2052
Year of Publication
2018
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
van de Lindt, John
Amini, Omar
Furley, Jace
Pei, Shiling
Tamagnone, Gabriele
Barbosa, André
Line, Philip
Rammer, Douglas
Fragiacomo, Massimo
Organization
Colorado State University
University of Trieste
Oregon State University
Amarican Wood Council
Forest Products Laboratory
University of L'Aquila
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Mechanical Properties
Keywords
Shake Table Tests
Full Scale
Service Level Earthquake
Design Base Earthquake
Maximum Considered Earthquake
Seismic Force Resisting System
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
With the increased usage of Cross Laminated Timber (CLT) in the United States, research efforts have been focused on demonstrating CLT as an effective Seismic Force Resisting System (SFRS). Presented in this paper are the findings of full-scale shake table tests of a two-story 223 m2 (2400 ft2) building with two sets of CLT shear walls on the first and second story. The testing consisted of three phases, each with a unique wall configuration, but only the first phase is presented herein, which consisted of a shear wall with 4:1 aspect ratio CLT panels. The structure was subjected to ground motions scaled to intensities that correspond to a Service Level Earthquake (SLE), Design Base Earthquake (DBE), and Maximum Considered Earthquake (MCE) respectively. In all phases and motions the structure performed well and was in accordance with FEMA collapse prevention requirements for each motion intensity.
Online Access
Free
Resource Link
Less detail

FE Modelling of Notched Connections for Timber-Concrete Composite Structures

https://research.thinkwood.com/en/permalink/catalogue1693
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Floors
Author
Bedon, Chiara
Fragiacomo, Massimo
Year of Publication
2016
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Beams
Floors
Topic
Connections
Mechanical Properties
Keywords
Finite Element Model
Numerical Model
Failure Mechanisms
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4272-4280
Summary
Notched connections are extensively used in timber-concrete (TC) composite beams and floors. Their main advantage is a significantly higher shear strength and stiffness compared to mechanical fasteners. Several mechanical and geometrical aspects, however, should be properly taken into account for design optimization of notched connections, as they strongly affect their structural performance and the corresponding failure mechanisms. In this paper, a preliminary Finite-Element (FE) numerical investigation is carried out by means of full 3D numerical models. The mechanical behaviour of each connection component (e.g. the reinforced concrete topping, the steel coach screw, the timber beam) is properly implemented. Shear or crushing failure mechanisms in the concrete, possible plasticization of the coach screw, as well as longitudinal shear or tension perpendicular to the grain failure mechanisms in the timber beam are taken into account using cohesive elements, damage material constitutive laws and appropriate surface-tosurface interactions. The results of parametric FE studies are compared to experimental data derived from literature, as well as to the results of simplified analytical models, demonstrating that the FE model is capable to capture the experimental behaviour of the connection including the failure mechanisms.
Online Access
Free
Resource Link
Less detail

Full-Scale Shake Table Test of a Two-story Mass-Timber Building with Resilient Rocking Walls

https://research.thinkwood.com/en/permalink/catalogue2067
Year of Publication
2018
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Barbosa, André
Berman, Jeffrey
Blomgren, Hans-Erik
Dolan, James
McDonnell, Eric
Zimmerman, Reid
Fragiacomo, Massimo
Rammer, Douglas
Organization
Colorado School of Mines
Colorado State University
Oregon State University
University of Washington
Washington State University
University of L’Aquila
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Shake Table Test
Multi-Story
Post-Tensioned
Rocking Walls
Conference
16th European Conference on Earthquake Engineering
Research Status
Complete
Summary
The NHERI TallWood project is a U.S. National Science Foundation-funded four-year research project focusing on the development of a resilient tall wood building design philosophy. One of the first major tasks within the project was to test a full-scale two-story mass timber building at the largest shake table in the U.S., the NHERI at UCSD’s outdoor shake table facility, to study the dynamic behaviour of a mass timber building with a resilient rocking wall system. The specimen consisted of two coupled two-story tall post-tensioned cross laminated timber rocking walls surrounded by mass timber gravity frames simulating a realistic portion of a building floor plan at full scale. Diaphragms consisted of bare CLT at the first floor level and concrete-topped, composite CLT at the roof. The specimen was subjected to ground motions scaled to three intensity levels representing frequent, design basis, and maximum considered earthquakes. In this paper, the design and implementation of this test program is summarized. The performance of the full building system under these different levels of seismic intensity is presented.
Online Access
Free
Resource Link
Less detail

26 records – page 1 of 3.