Skip header and navigation

Refine Results By

88 records – page 2 of 9.

Comparison of building construction and life-cycle cost for a high-rise mass timber building with its concrete alternative

https://research.thinkwood.com/en/permalink/catalogue3219
Year of Publication
2020
Topic
Environmental Impact
Author
Gu, Hongmei
Liang, Shaobo
Bergman, Richard
Organization
Forest Products Laboratory
Year of Publication
2020
Format
Journal Article
Topic
Environmental Impact
Keywords
Mass Timber Building
Concrete Building
Life Cycle Cost
Economic Impact
Research Status
Complete
Series
Forest Products Journal
Summary
Mass timber building materials such as cross-laminated timber (CLT) have captured attention in mid- to high-rise building designs because of their potential environmental benefits. The recently updated multistory building code also enables greater utilization of these wood building materials. The cost-effectiveness of mass timber buildings is also undergoing substantial analysis. Given the relatively new presence of CLT in United States, high front-end construction costs are expected. This study presents the life-cycle cost (LCC) for a 12-story, 8,360-m2 mass timber building to be built in Portland, Oregon. The goal was to assess its total life-cycle cost (TLCC) relative to a functionally equivalent reinforced-concrete building design using our in-house-developed LCC tool. Based on commercial construction cost data from the RSMeans database, a mass timber building design is estimated to have 26 percent higher front-end costs than its concrete alternative. Front-end construction costs dominated the TLCC for both buildings. However, a decrease of 2.4 percent TLCC relative to concrete building was observed because of the estimated longer lifespan and higher end-of-life salvage value for the mass timber building. The end-of-life savings from demolition cost or salvage values in mass timber building could offset some initial construction costs. There are minimal historical construction cost data and lack of operational cost data for mass timber buildings; therefore, more studies and data are needed to make the generalization of these results. However, a solid methodology for mass timber building LCC was developed and applied to demonstrate several cost scenarios for mass timber building benefits or disadvantages.
Online Access
Free
Resource Link
Less detail

Compartment Fire Testing of a Two-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue1825
Year of Publication
2018
Topic
Fire
Application
Wood Building Systems
Author
Zelinka, Samuel
Hasburgh, Laura
Bourne, Keith
Tucholski, David
Ouellette, Jason
Organization
Forest Products Laboratory
Year of Publication
2018
Format
Report
Application
Wood Building Systems
Topic
Fire
Keywords
Tall Wood
Gypsum
Mass Timber
Fire Performance
Compartment Fire Test
Sprinklers
Research Status
Complete
Summary
Five full-scale fire experiments were conducted to observe the performance of a two-level apartment-style structure constructed of mass timber. Each level consisted of a one bedroom apartment, an L-shaped corridor, and a stairwell connecting the two levels. One of the primary variables considered in this test series was the amount and location of exposed mass timber. The amount of mass timber surface area protected by gypsum wallboard ranged from 100% to no protection. For each experiment, the fuel load was identical and the fire was initiated in a base cabinet in the kitchen. In the first three experiments, the fire reached flashover conditions, and subsequently underwent a cooling phase as the fuel load from combustible contents was consumed. The first three experiments were carried out for a duration of up to 4 h. In the fourth experiment, automatic fire sprinklers were installed. Sprinklers suppressed the fire automatically. In the fifth experiment, the activation of the automatic fire sprinklers was delayed by approximately 20 minutes beyond the sprinkler activation time in the fourth experiment to simulate responding fire service charging a failed sprinkler water system. A variety of instrumentation was used during the experiments, including thermocouples, bidirectional probes, optical density meters, heat flux transducers, directional flame thermometers, gas analyzers, a fire products collector, and residential smoke alarms. In addition, the experiments were documented with digital still photography, video cameras, and a thermal imaging camera. The experiments were conducted in the large burn room of the Bureau of Alcohol, Tobacco, Firearms and Explosives Fire Research Laboratory located in Beltsville, Maryland, USA. This report provides details on how each experiment was set up, how the experiments were conducted, and the instrumentation used to collect the data. A brief summary of the test results is also included. Detailed results and full data for each test are included in separate appendices.
Online Access
Free
Resource Link
Less detail

Cradle-To-Gate Life-Cycle Assessment of Laminated Veneer Lumber (LVL) Produced in the Pacific Northwest Region of the United States

https://research.thinkwood.com/en/permalink/catalogue783
Year of Publication
2017
Topic
Environmental Impact
Material
LVL (Laminated Veneer Lumber)
Author
Bergman, Richard
Alanya-Rosenbaum, Sevda
Organization
Forest Products Laboratory
Year of Publication
2017
Format
Report
Material
LVL (Laminated Veneer Lumber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
US
Cradle-to-Gate
Production
Life-Cycle Inventory
Life-Cycle Impact Assessment
Research Status
Complete
Summary
The goal of this study was to update life-cycle assessment (LCA) data associated with laminated veneer lumber (LVL) production in the Pacific Northwest (PNW) region of the United States from cradle-to-gate mill output. The authors collected primary mill data from LVL production facilities per Consortium on Research for Renewable Industrial Materials (CORRIM) Research Guidelines. Comparative assertions were not a goal of this study.
Online Access
Free
Resource Link
Less detail

Cradle-To-Gate Life-Cycle Assessment of Laminated Veneer Lumber (LVL) Produced in the Southeast Region of the United States

https://research.thinkwood.com/en/permalink/catalogue782
Year of Publication
2017
Topic
Environmental Impact
Material
LVL (Laminated Veneer Lumber)
Author
Bergman, Richard
Alanya-Rosenbaum, Sevda
Organization
Forest Products Laboratory
Year of Publication
2017
Format
Report
Material
LVL (Laminated Veneer Lumber)
Topic
Environmental Impact
Keywords
Life-Cycle Impact Assessment
US
Production
Life-Cycle Assessment
Cradle-to-Gate
Research Status
Complete
Summary
The goal of the present study was to develop life-cycle impact assessment (LCIA) data associated with gate-to-gate laminated veneer lumber (LVL) production in the southeast (SE) region of the U.S. with the ultimate aim of constructing an updated cradle-to-gate mill output life-cycle assessment (LCA). The authors collected primary (survey) mill data from LVL production facilities per Consortium on Research for Renewable Industrial Materials (CORRIM) Research Guidelines. Comparative assertions were not a goal of the present study.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber (CLT) Resistance to Infestation by Subterranean Termites

https://research.thinkwood.com/en/permalink/catalogue2265
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Organization
Mississippi State University, USDA Forest Service Forest Products Laboratory
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Biodegradation
Research Status
In Progress
Notes
Contact: C. Elizabeth Stokes, Mississippi State University, Juliet Tang, Forest Products Laboratory (United States)
Summary
Outcomes anticipated from the results of this project are biodegradation information for CLT products and an improved understanding of biodegradation differences between CLT products and comparable laminated and solid wood products. Results will benefit the emerging CLT industry and provide valuable information for market expansion into areas with high termite pressure.
Less detail

Cross-Laminated Timber Roof Panels at the Promega Corporation Facility: Documenting Installation and Monitoring In-Service Moisture Conditions

https://research.thinkwood.com/en/permalink/catalogue801
Year of Publication
2013
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Glass, Samuel
Romanin, Jennifer
Schumacher, Jim
Spickler, Kris
Organization
Forest Products Laboratory
Year of Publication
2013
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Moisture
Keywords
Moisture
Temperature
Installation Process
Sensors
Research Status
Complete
Summary
The USDA Forest Products Laboratory (FPL) has, for the past two years, been assisting in removing technical barriers to the use of CLT and trying to develop interest in the United States for its utilization. Coincidentally, Promega Corporation, a leader in providing innovative solutions and technical support to the life sciences industry, is currently constructing a new facility in Fitchburg, Wisconsin, that features CLT. This is the first large-scale commercial utilization of CLT in the United States using CLT manufactured in North America. As with any new building system, it is important for the design and construction community to have information on how CLT is installed and how it performs. The objectives of this research are twofold: (1) to document the CLT installation process with photography and video and (2) to install sensors in the CLT panels and collect data on in-service moisture and temperature conditions.
Online Access
Free
Resource Link
Less detail

Determination of Char Rates for Glulam Columns Exposed to a Standard Fire for Three Hours

https://research.thinkwood.com/en/permalink/catalogue3238
Year of Publication
2021
Topic
Fire
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Author
Hasburgh, Laura E.
Bourne, Keith
Barber, David
Organization
Forest Products Laboratory
ARUP
Year of Publication
2021
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Topic
Fire
Keywords
Char Rates
Tall Wood
Fire Resistance
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The fire resistance of a structural building member includes its ability to survive a specified fire without loss of its loadbearing function. For glue laminated timber columns, fire resistance is determined by either subjecting a structural member to a standard fire test or by using one of two accepted calculation methods. For wood structural members, the calculation methods rely on char rates obtained from numerous standard fire tests. The existing calculation methods are limited under United States building codes to calculating fire resistance ratings of 120 minutes or less. However, over the past decade there has been a push towards tall wood buildings and designers desire more exposed wood to be permitted in buildings. This desire, coupled with the recent adoption of code language that permits tall wood buildings up to 18 stories, has resulted in the need to determine char rates for glue laminated timber to use in the fire resistance calculations up to 180 minutes. Here we present the experimental method and initial char rate results of glue laminated columns exposed to the standard fire.
Online Access
Free
Resource Link
Less detail

Determination of seismic performance factors for cross-laminated timber shear walls based on FEMA P695 methodology

https://research.thinkwood.com/en/permalink/catalogue3215
Year of Publication
2022
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Lindt, John van de
Amini, M. Omar
Rammer, Douglas
Line, Philip
Pei, Shiling
Popovski, Marjan
Organization
Forest Products Laboratory
Year of Publication
2022
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Seismic Design
Mass Timber Design
FEMA P695
Research Status
Complete
Summary
Cross-laminated timber (CLT) construction has been gaining popularity in North America. However, CLT-based seismic force resisting systems are not recognized in current U.S. design codes, which is among the many challenges preventing widespread adoption of CLT in the United States. The purpose of this study was to investigate the seismic behavior of CLT-based shear wall systems and to determine seismic performance factors, namely, the response modification factor (R factor), the system overstrength factor(O), and the deflection amplification factor (Cd), using the FEMA P695 procedure. Nine index buildings including single-family dwellings, multifamily dwellings, and commercial (including mixed use) midrise buildings were developed, from which 72 archetypes were extracted. Testing performed at the component and subassembly levels included connector tests and isolated shear wall tests. A CLT shear wall design method was developed and used to design the archetypes, which were then assessed with nonlinear pushover analysis and incremental dynamic analysis. Based on the required collapse margin, an R factor of 3 is proposed for CLT shear wall systems with 2:1 or mixed aspect ratio panels up to 4:1, and an R factor of 4 is proposed for CLT shear wall systems made up of only 4:1 aspect ratio panels. Results from this study have been proposed for recognition in U.S. building codes (such as the International Building Code) through specific change proposals to update reference standards such as ASCE 7 Minimum Design Loads and Associated Criteria for Buildings and Other Structures and Special Design Provisions for Wind and Seismic.
Online Access
Free
Resource Link
Less detail

Development and full-scale validation of resilience-based seismic design of tall wood buildings: the NEHRI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue3228
Year of Publication
2017
Topic
Seismic
Author
Pei, S.
Lindt, J. W. van de
Ricles, J.
Sause, R.
Berman, J.
Ryan, K.
Dolan, J. D.
Buchanan, A.
Robinson, T.
McDonnell, E.
Blomgren, H.
Popovski, M.
Rammer, D.
Organization
Colorado School of Mines
Lehigh University
University of Washington
University of Nevada Reno
Washington State University
PTL Consultants
Lever Architectures
KPFF
Katerra
FPInnovations
Forest Products Laboratory
Year of Publication
2017
Format
Conference Paper
Topic
Seismic
Keywords
Seismic Design
NHERI
Tallwood Project
Conference
2017 NZSEE conference proceedings
Research Status
Complete
Notes
Wellington, NZ
Summary
With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). With its relatively light weight, there is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. This paper introduces the NHERI Tallwood Project recentely funded by the U.S. National Science Fundation to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, full-scale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shaking table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.
Online Access
Free
Resource Link
Less detail

Development of a modified standard termite test for mass timber products

https://research.thinkwood.com/en/permalink/catalogue3252
Year of Publication
2022
Topic
Serviceability
Material
CLT (Cross-Laminated Timber)
Author
Franca, Tamara S.F.A.
Stokes, Elizabeth C.
Tang, Juliet D.
Organization
Mississippi State University
Forest Products Laboratory
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Serviceability
Keywords
Subterranean Termites
Laboratory Assay
Wood Durability
Research Status
Complete
Series
Wood and Fiber Science
Summary
US manufacturers are looking to expand the use of cross-laminated timber (CLT) panels into the North American market, including states located in the southeast where termites are important pests. However, there is no current assessment method for determining CLT vulnerability to the highly destructive native termites found in many states across the United States. The impact of damage by these termites is of particularly high interest in areas with suitable climate to their proliferation, such as the southeastern United States. This study evaluated durability of CLT panels and developed a laboratory assay to test susceptibility of this product to termites. Untreated CLT suffered mass losses of up to 5.8% in testing with an average visual rating of 7.2, indicating a moderate to severe attack with 10-30% of the cross section of the product affected by termite intrusion. Recommendations were developed for the inclusion of modifications presented in standardized testing protocols and will be presented to standards organizations. The proposed method may also be applied to evaluate termite resistance of other mass lumber products such as laminated veneer lumber and Glulam.
Online Access
Free
Resource Link
Less detail

88 records – page 2 of 9.