Skip header and navigation

48 records – page 1 of 5.

Advanced Quality and In-Service Condition Assessment Procedures for Mass Timber and Cross-Laminated Timber Products

https://research.thinkwood.com/en/permalink/catalogue2558
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Organization
Forest Products Laboratory
Mississippi State University
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Non-Destructive Evaluation
Bond Performance
Monitoring Techniques
Serviceability
Quality Assurance
Research Status
In Progress
Notes
Project contacts are Frederico França at Mississippi State University and Robert J. Ross at the Forest Products Laboratory
Summary
With the rapid development of CLT manufacturing capacity around the world and the increasing architectural acceptance and adoption, there is a current and pressing need regarding adhesive bond quality assurance in manufacturing. As with other engineered glued composites, adhesive bondline performance is critically important. Bondline assessment requires technology in the form of sensors, ultrasonics, load cells, or other means of reliable machine evaluation. The objectives of this cooperative study are to develop quality assurance procedures for monitoring the quality of mass timber and CLT during and after manufacturing and to develop assessment techniques for CLT panels in-service.
Resource Link
Less detail

Assessing Life-Cycle Environmental Impacts of CLT Mass Timber Buildings in the U.S. Northeast Region

https://research.thinkwood.com/en/permalink/catalogue2535
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Organization
Forest Products Laboratory
The Nature Conservancy
University of Washington
Consortium for Research on Renewable Industrial Materials
Atelierjones
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
GHG emission reduction
Research Status
In Progress
Notes
Project contact is Hongmei Gu at the Forest Products Laboratory
Summary
The FPL team is in charge of developing a full comparative LCA study for three multiple-story mass timber buildings and their concrete alternatives in the U.S. Northeast region, with Boston as the point location. Using these three comparative LCAs, this research will determine the GHG emissions reduction potential from mass timber use in the building sector for the U.S. region. This may increase potential for growth in wood utilization, timber harvest, and forest management practices through the market demands.
Resource Link
Less detail

Blast-Resistant Testing for Loaded Mass Timber Structures

https://research.thinkwood.com/en/permalink/catalogue843
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Organization
Forest Products Laboratory
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Exterior Walls
Blast Loads
Protection
Research Status
In Progress
Summary
Opening new markets for the use of CLT that can capitalize on the strength and speed of construction allowed by the technology creates the best opportunity for wood product market growth. One such market is the Department of Defense (DoD), representing an estimated 148 million board feet of additional lumber production. Wood products have been significantly under-represented in the DoD construction market because of their perceived performance in blast conditions. The objectives of this project are to develop a design methodology and to demonstrate performance for exterior bearing CLT walls used in buildings subject to force protection requirements. This methodology should be published by U.S. Army Corp of Engineers – Protective Design Center to be used by engineers for designing CLT elements to withstand blast loads as determined by code requirements and specific project conditions.
Resource Link
Less detail

Bonding Mixed Species for Advanced Biomaterials

https://research.thinkwood.com/en/permalink/catalogue2321
Organization
USDA Forest Service Forest Products Laboratory, Michigan Technological University
Research Status
In Progress
Notes
Project contacts are Xiping Wang at the Forest Products Laboratory, and Xinfeng Xie at Michigan Technological University
Summary
This project is expected to reveal if cross-laminated mixed hardwood and softwood species would have bonding properties similar to softwood CLT using commercial adhesives for timber laminating. The results will provide baseline data on adhesion properties of bonding mixed northern wood species.
Less detail

Comparative LCAs of Conventional and Mass Timber Buildings in Regions with Potential for Mass Timber Penetration

https://research.thinkwood.com/en/permalink/catalogue2885
Year of Publication
2021
Topic
Environmental Impact
Application
Wood Building Systems
Author
Puettmann, Maureen
Pierobon, Francesca
Ganguly, Indroneil
Gu, Hongmei
Chen, Cindy
Liang, Shaobo
Jones, Susan
Maples, Ian
Wishnie, Mark
Organization
University of Washington
Forest Products Laboratory
Portland State University
Editor
Borghi, Adriana Del
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Mass Timber
Life-Cycle Assessment
Embodied Carbon
Embodied Energy
Research Status
Complete
Series
Sustainability
Summary
Manufacturing of building materials and construction of buildings make up 11% of the global greenhouse gas emission by sector. Mass timber construction has the potential to reduce greenhouse gas emissions by moving wood into buildings with designs that have traditionally been dominated by steel and concrete. The environmental impacts of mass timber buildings were compared against those of functionally equivalent conventional buildings. Three pairs of buildings were designed for the Pacific Northwest, Northeast and Southeast regions in the United States to conform to mass timber building types with 8, 12, or 18 stories. Conventional buildings constructed with concrete and steel were designed for comparisons with the mass timber buildings. Over all regions and building heights, the mass timber buildings exhibited a reduction in the embodied carbon varying between 22% and 50% compared to the concrete buildings. Embodied carbon per unit of area increased with building height as the quantity of concrete, metals, and other nonrenewable materials increased. Total embodied energy to produce, transport, and construct A1–A5 materials was higher in all mass timber buildings compared to equivalent concrete. Further research is needed to predict the long-term carbon emissions and carbon mitigation potential of mass timber buildings to conventional building materials.
Online Access
Free
Resource Link
Less detail

Compartment Fire Testing of a Two-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue1825
Year of Publication
2018
Topic
Fire
Application
Wood Building Systems
Author
Zelinka, Samuel
Hasburgh, Laura
Bourne, Keith
Tucholski, David
Ouellette, Jason
Organization
Forest Products Laboratory
Year of Publication
2018
Format
Report
Application
Wood Building Systems
Topic
Fire
Keywords
Tall Wood
Gypsum
Mass Timber
Fire Performance
Compartment Fire Test
Sprinklers
Research Status
Complete
Summary
Five full-scale fire experiments were conducted to observe the performance of a two-level apartment-style structure constructed of mass timber. Each level consisted of a one bedroom apartment, an L-shaped corridor, and a stairwell connecting the two levels. One of the primary variables considered in this test series was the amount and location of exposed mass timber. The amount of mass timber surface area protected by gypsum wallboard ranged from 100% to no protection. For each experiment, the fuel load was identical and the fire was initiated in a base cabinet in the kitchen. In the first three experiments, the fire reached flashover conditions, and subsequently underwent a cooling phase as the fuel load from combustible contents was consumed. The first three experiments were carried out for a duration of up to 4 h. In the fourth experiment, automatic fire sprinklers were installed. Sprinklers suppressed the fire automatically. In the fifth experiment, the activation of the automatic fire sprinklers was delayed by approximately 20 minutes beyond the sprinkler activation time in the fourth experiment to simulate responding fire service charging a failed sprinkler water system. A variety of instrumentation was used during the experiments, including thermocouples, bidirectional probes, optical density meters, heat flux transducers, directional flame thermometers, gas analyzers, a fire products collector, and residential smoke alarms. In addition, the experiments were documented with digital still photography, video cameras, and a thermal imaging camera. The experiments were conducted in the large burn room of the Bureau of Alcohol, Tobacco, Firearms and Explosives Fire Research Laboratory located in Beltsville, Maryland, USA. This report provides details on how each experiment was set up, how the experiments were conducted, and the instrumentation used to collect the data. A brief summary of the test results is also included. Detailed results and full data for each test are included in separate appendices.
Online Access
Free
Resource Link
Less detail

Control of Solar-Driven Moisture Diffusion in Cross-Laminated Timber Walls with Absorptive Claddings

https://research.thinkwood.com/en/permalink/catalogue717
Topic
Design and Systems
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Glass, Samuel
Organization
Forest Products Laboratory
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Moisture
Keywords
Moisture Content
Absorptive Claddings
US
Climates
Research Status
In Progress
Summary
Prior research showed that inward moisture diffusion from absorptive claddings such as brick veneer, stucco, or manufactured stone veneer can be significant in wood-frame walls. The inward migration of moisture is greatest when the cladding is heated by the sun after being wetted by rain. The same phenomenon is likely to occur in CLT walls with these types of claddings (Fig. 1). General guidance on CLT building envelope design was published in chapter 10 of the U.S. CLT Handbook, which cautions that inward diffusion of moisture from absorptive claddings could lead to moisture accumulation in CLT based on initial computer modeling predictions. Experimental measurements are needed to provide a stronger basis for design of CLT exterior walls. The objectives of the project are to measure moisture conditions in CLT walls with absorptive claddings under exposure to simulated rain and sun and to identify design and construction practices that minimize the risk of moisture accumulation in different U.S. climates.
Resource Link
Less detail

Cradle-To-Gate Life-Cycle Assessment of Laminated Veneer Lumber (LVL) Produced in the Pacific Northwest Region of the United States

https://research.thinkwood.com/en/permalink/catalogue783
Year of Publication
2017
Topic
Environmental Impact
Material
LVL (Laminated Veneer Lumber)
Author
Bergman, Richard
Alanya-Rosenbaum, Sevda
Organization
Forest Products Laboratory
Year of Publication
2017
Format
Report
Material
LVL (Laminated Veneer Lumber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
US
Cradle-to-Gate
Production
Life-Cycle Inventory
Life-Cycle Impact Assessment
Research Status
Complete
Summary
The goal of this study was to update life-cycle assessment (LCA) data associated with laminated veneer lumber (LVL) production in the Pacific Northwest (PNW) region of the United States from cradle-to-gate mill output. The authors collected primary mill data from LVL production facilities per Consortium on Research for Renewable Industrial Materials (CORRIM) Research Guidelines. Comparative assertions were not a goal of this study.
Online Access
Free
Resource Link
Less detail

Cradle-To-Gate Life-Cycle Assessment of Laminated Veneer Lumber (LVL) Produced in the Southeast Region of the United States

https://research.thinkwood.com/en/permalink/catalogue782
Year of Publication
2017
Topic
Environmental Impact
Material
LVL (Laminated Veneer Lumber)
Author
Bergman, Richard
Alanya-Rosenbaum, Sevda
Organization
Forest Products Laboratory
Year of Publication
2017
Format
Report
Material
LVL (Laminated Veneer Lumber)
Topic
Environmental Impact
Keywords
Life-Cycle Impact Assessment
US
Production
Life-Cycle Assessment
Cradle-to-Gate
Research Status
Complete
Summary
The goal of the present study was to develop life-cycle impact assessment (LCIA) data associated with gate-to-gate laminated veneer lumber (LVL) production in the southeast (SE) region of the U.S. with the ultimate aim of constructing an updated cradle-to-gate mill output life-cycle assessment (LCA). The authors collected primary (survey) mill data from LVL production facilities per Consortium on Research for Renewable Industrial Materials (CORRIM) Research Guidelines. Comparative assertions were not a goal of the present study.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber (CLT) Resistance to Infestation by Subterranean Termites

https://research.thinkwood.com/en/permalink/catalogue2265
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Organization
Mississippi State University, USDA Forest Service Forest Products Laboratory
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Biodegradation
Research Status
In Progress
Notes
Contact: C. Elizabeth Stokes, Mississippi State University, Juliet Tang, Forest Products Laboratory
Summary
Outcomes anticipated from the results of this project are biodegradation information for CLT products and an improved understanding of biodegradation differences between CLT products and comparable laminated and solid wood products. Results will benefit the emerging CLT industry and provide valuable information for market expansion into areas with high termite pressure.
Less detail

48 records – page 1 of 5.