The fire resistance of cross-laminated timber (CLT) could be improved by treating the lamina with fire retardants. The major issues with this technology are the reduced bondability of the treated lamina with commercial adhesives. This study assessed several surface preparation methods that could improve the bondability and bond durability of fire-retardant treated wood with two commercial adhesives. Four surface preparation methods, including moisture/heat/pressure, surface planing, surface chemical treatment, and surface plasma treatment were assessed for their impact on the bondability and bond durability of lodgepole pine lamina. The block shear test results indicated that all surface preparation methods were somewhat effective in improving bond performance of fire-retardant treated wood compared to the untreated control wood samples, depending on the types of fire retardants and wood adhesives applied in the treatment process and bonding process. The selection of surface preparation, fire retardant, and wood adhesive should be considered interactively to obtain the best bond properties and fire performance. It may be possible to effectively bond the treated lamina with PUR adhesive without any additional surface preparation for the fire retardant used in the treatment at FPInnovations.
Effective preservative treatments for Canadian glulam products are needed to maintain markets for mass timber on building facades, access markets with significant termite hazards, and expand markets for wood bridges. For all three applications, borate-treatment of lamina before gluing would be preferred as it would lead to maximum preservative penetration. However, the need to plane after treatment and prior to gluing removes the best-treated part of the wood, and creates a disposal issue for treated planer shavings. The present research evaluates the block shear resistance of glulam prepared from untreated and borate-treated lamina with a polyurethane adhesive. Borate treatment was associated with a small but statistically significant loss in median shear strength when evaluated dry; however, there was no difference between the performance of untreated and borate-treated samples when exposed to the vacuum-pressure soak/dry or the boil-dry-freeze/dry procedures. Further work is needed to modify the composition or application of the resin to improve shear strength for glulam applications and ensure consistent performance. However, overall, these data indicate that samples prepared from borate-treated lamina perform similarly in terms of block shear resistance to those prepared from untreated lamina.