In this study, new design models for cross-laminated timber (CLT) are developed to verify the fire resistance up to 120 minutes. This is done aiming for the popular Effective Cross-Section Method using a so-called zero-strength layer (ZSL) to account for losses in strength and stiffness. This was done using a method earlier presented at WCTE 2010 and discussed with the European industry. To allow for improvements, (a) the current CLT product portfolio was analysed and thermal and mechanical simulations were done accordingly for initially unprotected and unprotected members. Further, (b) new definitions for the ZSL were used to allow for a higher accuracy of the simplified models. As anoutcome, a model with (1) tabulated data between 7.0 and 12.0 mm for the effective ZSL only considering longitudinal layers and (2) a simplified model “twelve and two” is proposed for CLT members in bending.
Cross-laminated timber (CLT) became a popular engineered wood product in recent years for highquality and innovative timber buildings. As for any building product, the fire behaviour of CLT panels requires careful evaluation in the design of such buildings. The adhesive used in the bond lines of CLT plays an important role in the fire design. However, currently, European standards do not provide a test method to assess the adhesive performance in CLT exposed to fire. This paper presents a series of fire tests performed with CLT panels glued with different adhesives. It is shown how the mass loss of the CLT panels in standard fire resistance tests can be used to assess the adhesive performance in CLT exposed to fire.
The performance of timber in fire is often assessed by measuring the temperature at different positions in the specimen. As timber is a low conductive material, it can be difficult to measure the correct temperature.Therefore, this paper shows how to correctly measure the temperature in timber members and how to describe temperature measurements of fire tests and experiments non-ambiguously.Typical temperature measurement setups used in tests and experiments were experimentally assessed under ISO/EN fire exposure and a constant incident radiant heat flux. By comparing the charring depth and the thermocouple readings(charring temperature 300°C) it was found that only the wire thermocouples inlaid parallel to the isotherms deliver correct temperature readings. For other temperature measurement setups, the underestimation was between 5 and 20 minutes.Due to the numerous factors influencing the measurement error, no correction factor could be defined.