Skip header and navigation

2 records – page 1 of 1.

Ductility Based Force Reduction Factors for Symmetrical Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue446
Year of Publication
2014
Topic
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Author
Popovski, Marjan
Pei, Shiling
van de Lindt, John
Karacabeyli, Erol
Organization
European Association of Earthquake Engineering
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Topic
Mechanical Properties
Seismic
Keywords
Force Modification Factors
Ductility
National Building Code of Canada
Fasteners
Seismic Performance
Language
English
Conference
Second European Conference on Earthquake Engineering and Seismology
Research Status
Complete
Notes
August 25-29, 2014, Istanbul, Turkey
Summary
Cross-laminated timber (CLT) as a structural system has not been fully introduced in European or North American building codes. One of the most important issues for designers of CLT structures in earthquake prone regions when equivalent static design procedure is used, are the values for the force modification factors (R-factors) for this structural system. Consequently, the objective of this study was to derive suitable ductility-based force modification factors (Rd-factors) for seismic design of CLT buildings for the National Building Code of Canada (NBCC). For that purpose, the six-storey NEESWood Capstone wood-frame building was redesigned as a CLT structure and was used as a reference symmetrical structure for the analyses. The same floor plan was used to develop models for ten and fifteen storey buildings. Non-linear analytical models of the buildings designed with different Rd-factors were developed using the SAPWood computer program. CLT walls were modelled using the output from mechanics models developed in Matlab that were verified against CLT wall tests conducted at FPInnovations. Two design methodologies for determining the CLT wall design resistance (to include and exclude the influence of the hold-downs), were used. To study the effects of fastener behaviour on the R-factors, three different fasteners (16d nails, 4x70mm and 5x90mm screws) used to connect the CLT walls, were used in the analyses. Each of the 3-D building models was subjected to a series of 22 bi-axial input earthquake motions suggested in the FEMA P-695 procedure. Based on the results, the fragility curves were developed for the analysed buildings. Results showed that an Rd-factor of 2.0 is appropriate conservative estimate for the symmetrical CLT buildings studied, for the chosen level of seismic performance.
Online Access
Free
Resource Link
Less detail

Earthquake Resistant Design and Sustainability through Wooden Composites in Multi-Storey Structures

https://research.thinkwood.com/en/permalink/catalogue148
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Ceylan, Aygül
Canan Girgin, Z.
Organization
European Association of Earthquake Engineering
Year of Publication
2014
Country of Publication
Turkey
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Multi-Storey
Canada
Italy
New Zealand
Wooden Structural Systems
Wooden-Hybrid Structural Systems
Post-Tensioning
Connections
Sustainability
Language
English
Conference
Second European Conference on Earthquake Engineering and Seismology
Research Status
Complete
Notes
August 25-29, 2014, Istanbul, Turkey
Summary
In the past, while wood as a natural building material was preferred for only housing construction, today, engineered wood products are used as structural elements even in many different projects such as, schools, airport terminals, stadiums or indoor sport centres and finally in multi-storey houses nowadays. On the other hand, the sustainability is becoming a key focus. Engineered wood products are increasingly used for earthquake resistance as well as natural insulation and sustainable design. Recent studies indicate that the earthquake resistant design through engineered wood products is achievable and affordable. The seismic design of structures typically depends on the ductility of members and connections. The innovative design techniques with wooden composites ensure that the building is functional after a major earthquake event. Within the scope of this study, the earthquake resistant design approaches and experimental results of New Zealand, Canada and Italy are addressed for multi-storey wooden/wooden-hybrid structural systems. Member and connection types, posttensioning effectiveness, floor systems, sustainability and constructability will be focused.
Online Access
Free
Resource Link
Less detail