Skip header and navigation

2 records – page 1 of 1.

An Innovative Method Based on Grain Angle Measurement to Sort Veneer and Predict Mechanical Properties of Beech Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue1286
Year of Publication
2018
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Viguier, Joffrey
Bourgeay, Christophe
Rohumaa, Anti
Pot, Guillaume
Denaud, Louis
Publisher
ScienceDirect
Year of Publication
2018
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Modulus of Elasticity
Beech
Grain Angle
Grading
Density
Research Status
Complete
Series
Construction and Building Materials
Summary
Cross-Laminated Timber (CLT) structures exhibit satisfactory performance under seismic conditions. This ispossible because of the high strength-to-weight ratio and in-plane stiffness of the CLT panels, and the capacity ofconnections to resist the loads with ductile deformations and limited impairment of strength. This study sum-marises a part of the activities conducted by the Working Group 2 of COST Action FP1402, by presenting an in-depth review of the research works that have analysed the seismic behaviour of CLT structural systems. Thefirstpart of the paper discusses the outcomes of the testing programmes carried out in the lastfifteen years anddescribes the modelling strategies recommended in the literature. The second part of the paper introduces theq-behaviour factor of CLT structures and provides capacity-based principles for their seismic design.
Online Access
Free
Resource Link
Less detail

Modelling the Effects of Wood Cambial Age on the Effective Modulus of Elasticity of Poplar Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue1417
Year of Publication
2016
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Girardon, Stéphane
Denaud, Louis
Pot, Guillaume
Rahayu, Istie
Publisher
Springer Paris
Year of Publication
2016
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Poplar
Modulus of Elasticity
Analytical Model
Bending
Thickness
Research Status
Complete
Series
Annals of Forest Science
Summary
A modelling method is proposed to highlight the effect of cambial age on the effective modulus of elasticity of laminated veneer lumber (LVL) according to bending direction and veneer thickness. This approach is relevant for industrial purposes in order to optimize the performance of LVL products. LVL is used increasingly in structural applications. It is obtained from a peeling process, where product’s properties depend on cambial age, hence depend on radial position in the log. This study aims to highlight how radial variations of properties and cambial age impact the mechanical behaviour of LVL panels. An analytical mechanical model has been designed to predict the modulus of elasticity of samples made from poplar LVL panels. The originality of the model resides in the integration of different data from the literature dealing with the variation in wood properties along the radius of the log. The simulation of the peeling process leads to veneers with different mechanical properties, which are randomly assembled in LVL panels. The model shows a correct mechanical behaviour prediction in comparison with experimental results of the literature, in particular with the decrease in MOE in LVL made of juvenile wood. It highlights that the bending direction and veneer thickness have no influence on the average MOE, but affect MOE dispersion. This paper proposed an adequate model to predict mechanical behaviour in the elastic domain of LVL panels based on the properties of raw wood material.
Online Access
Free
Resource Link
Less detail