New possibilities offered by recent modelling software allow the design of organic shapes that are appealing to architects and engineers but may encompass serious issues such as an overconsumption of materials. In this context, there is a renewed interest in systems allowing the materialization of curved surfaces such as timber gridshells, which can be defined as shells with their structures concentrated in strips. However, gridshell design becomes highly challenging if complex grid configurations and new material possibilities are combinedly explored with form generations. These upheavals highlight the need for a classification system to seize the potential and the limitations of timber gridshells to address complex geometries. The classification of 60 timber gridshells enables a critical examination in the course of the ceaseless quest for complexity in architecture by evaluating current building possibilities and predict future building opportunities in terms of form, structure, and materiality.
The design-build of a Wooden Adaptive Architectural System is part of a larger research-creation project on Adaptive Architecture (AA) [1] exploring the entire design process leading to a fully adaptable three story high 1:3/4 wooden structure. This system allows the easy manoeuvrability by the occupants of walls and floors in x, y and z directions in order to adapt the space to their environmental and functional needs. The omnidirectional mobility criteria challenged conventional building techniques and led to an innovative all-wood rigid node. Extensive prototyping using digital fabrication allowed the team to optimize the node assemblage and precision through parametric experimentation before proper production. The Wooden Adaptive Architectural System, made of 2000 prefabricated sticks measuring as little as 1 ¾” x 1 ¾” x 24” provides fully adaptive space configurations and be easily deconstructed, transported, and reassembled in totally new building shapes.