The research presented in this paper examines the shear resistance performance of self-tapping screws (STS) in three-ply cross-laminated timber (CLT) panels. Specifically, the feasibility of using innovative STS assemblies with double inclination of fasteners was investigated for the shear connection of CLT panels. The specimens (1.5×1.5 m) were subjected to quasi-static and reversed-cyclic loading. The tests were set up to approximate pure shear loading, with three-panel CLT assemblies connected with STS. The resulting load-displacement and hysteretic curves were used to determine an equivalent energy elastic-plastic curve to estimate assembly capacity, yield load, yield displacement, ductility ratio, stiffness, and damping. Excellent structural performance in terms of capacity and stiffness was obtained while still providing the required ductility for the system to be used in seismic applications. The average static and cyclic yield loads were 6.0 kN/screw and 5.9 kN/screw, respectively. Average static and cyclic and ductility ratios were 7.7 and 4.1, respectively, allowing the connection to be classified as highly ductile under quasi-static loading and moderately ductile under reversed cyclic loading. The data obtained allow engineers to specify an innovative connection assembly with double inclination of fasteners for lateral load–resisting systems of CLT structures.
The research presented in this paper examines the performance of a shear connection using self-tapping screws (STS) in 3-ply Cross-Laminated Timber (CLT) panels. CLT panels were connected with STS assemblies at an inclined angle in two directions. The capacity of the STS assemblies was tested for the purpose of designing a CLT roof diaphragm of a large storage facility where a high-performance and low-manufacturing-cost solution was required. A total of eleven full-scale specimens were subjected to quasi-static and reversed-cyclic shear loading. Resulting forcedisplacement and hysteretic curves were used to determine an equivalent energy elastic-plastic curve based on ASTM E2126-11 procedures to estimate assembly yield strength, yield displacement, and ductility ratio. The performance in terms of strength and stiffness was excellent, and the STS provided the required ductility for the system to be used in seismic applications. Static yield strength averaged 80kN/m with an average ductility ratio of 7.7 while cyclic yield strength averaged 68kN/m with an average ductility ratio of 4.1. The data obtained allows engineers to specify low-cost lateral load resisting connection systems for large scale CLT structures.
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
Pres-Lam is a post-tensioned rocking timber technology that has been developed over the last decade at the University of Canterbury. Pres-Lam overcomes a major challenge in timber construction, the development of a high strength moment connection, by tying mass timber elements together with high-strength steel post-tensioned tendons. In seismic areas, additional reinforcing can be added to the system increasing capacity as well as providing hysteretic damping. In 2010 Pres-Lam moved from laboratory testing to onsite implementation and has now been used in the construction of numerous building in New Zealand and around the world. This paper will present the lateral load design of the first Pres-Lam structure to be built in the United States: the Peavy Building at Oregon State University, Corvallis, Oregon. Peavy is a three-storey mass timber building within the College of Forestry. A glulam and CLT gravity structure support the timber-concrete-composite floor, which is made up of CLT panels spanning between glulam beams. The lateral load carrying capacity is provided in the two orthogonal directions by Pres-Lam walls fabricated from Cross Laminated Timber (CLT). The paper will present an overview of the design philosophy and the main motivations for the use of the Pres-Lam system, discuss the requirements for U.S. code compliance, and review the nonlinear time-history analysis of the Pres-Lam structure.