Skip header and navigation

3 records – page 1 of 1.

Cross-Laminated Timber Shear Connections with Double-Angled Self-Tapping Screw Assemblies

https://research.thinkwood.com/en/permalink/catalogue544
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Hossain, Afrin
Danzig, Ilana
Tannert, Thomas
Publisher
American Society of Civil Engineers
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Shear Resistance Performance
Shear Connection
Quasi-Static
Reverse Cyclic Loading
Lateral Load
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
The research presented in this paper examines the shear resistance performance of self-tapping screws (STS) in three-ply cross-laminated timber (CLT) panels. Specifically, the feasibility of using innovative STS assemblies with double inclination of fasteners was investigated for the shear connection of CLT panels. The specimens (1.5×1.5 m) were subjected to quasi-static and reversed-cyclic loading. The tests were set up to approximate pure shear loading, with three-panel CLT assemblies connected with STS. The resulting load-displacement and hysteretic curves were used to determine an equivalent energy elastic-plastic curve to estimate assembly capacity, yield load, yield displacement, ductility ratio, stiffness, and damping. Excellent structural performance in terms of capacity and stiffness was obtained while still providing the required ductility for the system to be used in seismic applications. The average static and cyclic yield loads were 6.0 kN/screw and 5.9 kN/screw, respectively. Average static and cyclic and ductility ratios were 7.7 and 4.1, respectively, allowing the connection to be classified as highly ductile under quasi-static loading and moderately ductile under reversed cyclic loading. The data obtained allow engineers to specify an innovative connection assembly with double inclination of fasteners for lateral load–resisting systems of CLT structures.
Online Access
Free
Resource Link
Less detail

High Performance Cross-Laminated-Timber Shear Connection with Self-Tapping Screw Assemblies

https://research.thinkwood.com/en/permalink/catalogue504
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Danzig, Ilana
Closen, Maximilian
Tannert, Thomas
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Panels
Full Scale
Quasi-Static
Reverse Cyclic Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The research presented in this paper examines the performance of a shear connection using self-tapping screws (STS) in 3-ply Cross-Laminated Timber (CLT) panels. CLT panels were connected with STS assemblies at an inclined angle in two directions. The capacity of the STS assemblies was tested for the purpose of designing a CLT roof diaphragm of a large storage facility where a high-performance and low-manufacturing-cost solution was required. A total of eleven full-scale specimens were subjected to quasi-static and reversed-cyclic shear loading. Resulting forcedisplacement and hysteretic curves were used to determine an equivalent energy elastic-plastic curve based on ASTM E2126-11 procedures to estimate assembly yield strength, yield displacement, and ductility ratio. The performance in terms of strength and stiffness was excellent, and the STS provided the required ductility for the system to be used in seismic applications. Static yield strength averaged 80kN/m with an average ductility ratio of 7.7 while cyclic yield strength averaged 68kN/m with an average ductility ratio of 4.1. The data obtained allows engineers to specify low-cost lateral load resisting connection systems for large scale CLT structures.
Online Access
Free
Resource Link
Less detail

Pres-Lam in the US: The Seismic Design of the Peavy Building at Oregon State University

https://research.thinkwood.com/en/permalink/catalogue1475
Year of Publication
2017
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Author
Sarti, Francesco
Smith, Tobias
Danzig, Ilana
Karsh, Eric
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Pres-Lam
Load Carrying Capacity
US
Codes
Nonlinear Time History Analysis
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
Pres-Lam is a post-tensioned rocking timber technology that has been developed over the last decade at the University of Canterbury. Pres-Lam overcomes a major challenge in timber construction, the development of a high strength moment connection, by tying mass timber elements together with high-strength steel post-tensioned tendons. In seismic areas, additional reinforcing can be added to the system increasing capacity as well as providing hysteretic damping. In 2010 Pres-Lam moved from laboratory testing to onsite implementation and has now been used in the construction of numerous building in New Zealand and around the world. This paper will present the lateral load design of the first Pres-Lam structure to be built in the United States: the Peavy Building at Oregon State University, Corvallis, Oregon. Peavy is a three-storey mass timber building within the College of Forestry. A glulam and CLT gravity structure support the timber-concrete-composite floor, which is made up of CLT panels spanning between glulam beams. The lateral load carrying capacity is provided in the two orthogonal directions by Pres-Lam walls fabricated from Cross Laminated Timber (CLT). The paper will present an overview of the design philosophy and the main motivations for the use of the Pres-Lam system, discuss the requirements for U.S. code compliance, and review the nonlinear time-history analysis of the Pres-Lam structure.
Online Access
Free
Resource Link
Less detail