The performance of structural timber connections is of utmost importance since they control the global response of the building. A ductile failure mechanism on the global scale is desirable, especially in the design of structures in seismic areas, where dissipative components in which ductile failure modes need to be ensured are considered. Therefore, the knowledge of possible brittle failure modes of connections is crucial. The paper investigates the brittle failures of laterally loaded dowel-type connections in cross-laminated timber subjected to tensile load in a lap joint configuration through experimental investigations and analytical estimations. A set of 13 different test series has been performed with fully threaded self-tapping screws of 8 mm diameter and different lengths (40 to 100 mm) in cross-laminated timber composed of 3 or 5 layers (layer thickness range from 20 to 40 mm), giving rise to the activation of different brittle failure modes at different depths. Plug shear was among the most typically observed failure modes. A previously proposed model for the brittle capacity was applied to the tested connections at the characteristic level. As shown by the performed statistical analysis, the existing model is not reliable and mainly unconservative. A very low performance is observed (CCC = 0.299), but with a good correlation (c = 0.750) for the tests in the parallel direction. Further research work is required to improve the current model predictions and to gain a better understanding of the underlying resisting mechanisms.
Cross Laminated Timber (CLT) at in-plane beam loading conditions present a very complex stress state and many failure modes need to be considered in design. The work presented here aims at finding improvements of a specific analytical model for stress analysis and strength verification that has been suggested in literature and which is also suggested as a basis for design equations for the next version of Eurocode 5. Although the model has appealing properties it suffers from some drawbacks related to the assumed distributions of internal forces which, based on comparison to finite element analysis, appear to be inaccurate. The main focus in this paper is on model predictions regarding the distribution and magnitude of internal forces acting in the crossing areas between longitudinal and transversal laminations. The proposed modified model assumptions regarding the distribution of lamination shear forces, which in turn influence the forces acting in the crossing areas, are suggested to be taken into account in design of CLT beams.
The paper demonstrates improved structural low-frequency vibroacoustic performance of cross-laminated timber (CLT) floor panels by informed selection of the wood material. The use of wood species and strength classes that are not traditionally assigned to CLT panels was investigated in order to study their influence on dynamic characteristics and vibroacoustic response metrics. The potential of each of the orthotropic material properties to alternate the vibration response was examined to determine the governing parameters of the low-frequency vibroacoustic performance. The effects on transfer mobility response functions, and eigenfrequencies and mode shapes were used for a rigorous performance study of the panels. It was found that using laminations with stiffness properties typical for hardwoods ash, beech, and birch can significantly improve the performance of a CLT floor panel, and they outperform laminations of typical softwood strength classes.