Skip header and navigation

48 records – page 1 of 5.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Exit Fire Separations in Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1879
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Topic
Fire
Keywords
National Building Code of Canada
Combustible Material
Mid-Rise
Noncombustible Construction
Research Status
Complete
Summary
FPInnovations initiated this project to demonstrate the ability of wood exit stairs in mid-rise buildings to perform adequately in a fire when NBCC requirements are followed, with the intent of changing perceptions of the fire safety of wood construction. The objective of this research is to investigate further the fire safety afforded by exit stair shafts of combustible construction, with the ultimate objective of better consistency between the provincial and national building codes with respect to fire requirements for exit stair shafts in mid-rise wood-frame construction.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Mid-Rise Wood Exit Shaft Demonstration Fire Test Report

https://research.thinkwood.com/en/permalink/catalogue1176
Year of Publication
2018
Topic
Fire
Application
Shafts and Chases
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Organization
FPInnovations
Year of Publication
2018
Format
Report
Application
Shafts and Chases
Topic
Fire
Keywords
Mid-Rise
Residential
Multi-Family
Exit Shafts
Research Status
Complete
Summary
FPInnovations conducted a research project to study the construction of mid-rise wood exit shafts in Ontario and Québec. The scope of the project included an investigation into the concerns that have been raised in regards to the use of wood exits in mid-rise buildings, an analysis of recent Canadian fire statistics in residential multi-family structures, and a fire demonstration of a mass timber wall and supported light-frame floor. This report describes the fire demonstration completed as part of this project; this report acts as a supplement to the full project report.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Advancing Knowledge of Mid-ply Shear Walls: Mid-Ply Shear Wall Fire Resistance Testing

https://research.thinkwood.com/en/permalink/catalogue2808
Year of Publication
2021
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2021
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Fire
Keywords
Shear Walls
Fire Resistance Rating
Mid-Rise
Midply Wall
Research Status
Complete
Summary
The objective of this research is to address a knowledge gap related to fire performance of midply shear walls. Testing has already been done to establish the structural performance of these assemblies. To ensure their safe implementation and their broad acceptance, this project will establish fire resistance ratings for midply shear walls. Fire tests will provide information for the development of design considerations for midply shear walls and confirm that they can achieve at least 1-hour fire-resistance ratings that are required for use in mid-rise buildings. This research will support greater adoption of mid-rise residential and non-residential wood-frame construction and improve competition with similar buildings of noncombustible construction. This work will also support the development of the APA system report for midply walls, which will be a design guideline for using midply walls in North America.
Online Access
Free
Resource Link
Less detail

Analysis of Full-Scale Fire-Resistance Tests of Structural Composite Lumber Beams

https://research.thinkwood.com/en/permalink/catalogue366
Year of Publication
2014
Topic
Fire
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Author
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Topic
Fire
Keywords
Encapsulation
Type X Gypsum Board
Fire Resistance
Full Scale
Research Status
Complete
Summary
The key objective of this study is to analyze full-scale fire-resistance tests conducted on structural composite lumber (SCL), namely laminated veneer lumber (LVL), parallel strand lumber (PSL) and laminated strand lumber (LSL). A sub-objective is to evaluate the encapsulation performance of Type X gypsum board directly applied to SCL beams and its contribution to fire-resistance of wood elements. The test data is being used to further support the applicability of the newly developed Canadian calculation method for mass timber elements, recently implemented as Annex B of CSA O86-14.
Online Access
Free
Resource Link
Less detail

Assessing the Fire Integrity Performance of Cross-Laminated Timber Floor Panel-To-Panel Joints

https://research.thinkwood.com/en/permalink/catalogue185
Year of Publication
2016
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Dagenais, Christian
Organization
Carleton University
Year of Publication
2016
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Connections
Fire
Keywords
Finite Element Model
Thickness
Codes
Panel-to-Panel
Joints
Canada
US
Fire Resistance
Research Status
Complete
Summary
During the past few years, a relatively new technology has emerged in North America and changed the way professionals design and build wood structures: Cross-laminated Timber (CLT). CLT panels are manufactured in width ranging from 600 mm to 3 m. As such, fastening them together along their major strength axis is required in order to form a singular structural assembly resisting to in-plane and out-of-plane loading. Typical panel-to-panel joint details of CLT assemblies may consist of internal spline(s), single or double surface splines or half-lapped joints. These tightly fitted joint profiles should provide sufficient fire-resistance, but have yet to be properly evaluated for fire-resistance in CLT assemblies. The experimental portion of the study consisted at conducting ten (10) intermediate-scale fire-resistance tests of CLT floor assemblies with four (4) types of panel-to-panel joints and three (3) CLT thicknesses. The data generated from the intermediate-scale fire tests were used to validate a finite element heat transfer model, a coupled thermal-structural model and a simplified design model. The latter is an easy-to-use design procedure for evaluating the fire integrity resistance of the four commonly-used CLT floor assemblies and could potentially be implemented into building codes and design standards. Based on the test data and models developed in this study, joint coefficient values were derived for the four (4) types of CLT panel-to-panel joint details. Joint coefficients are required when assessing the fire integrity of joints using simple design models, such as the one presented herein and inspired from Eurocode 5: Part 1-2. The contribution of this study is to increase the knowledge of CLT exposed to fire and to facilitate its use in Canada and US by complementing current fire-resistance design methodologies of CLT assemblies, namely with respect to the fire integrity criterion. Being used as floor and wall assemblies, designers should be capable to accurately verify both the load-bearing and separating functions of CLT assemblies in accordance with fire-related provisions of the building codes, which are now feasible based on the findings of this study.
Online Access
Free
Resource Link
Less detail

Assessing The Flammability of Mass Timber Components: A Review

https://research.thinkwood.com/en/permalink/catalogue87
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Mehaffey, Jim
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
National Building Code of Canada
Flame Spread
Model
Cone Calorimeter Testing
Buildings
Research Status
Complete
Summary
This report begins with a discussion of the mechanisms of flame spread over combustible materials while describing the NBCC prescriptive solutions that establish the acceptable fire performance of interior finish materials. It is noted that while flame spread ratings do give an indication of the fire performance of products in building fires, the data generated are not useful as input to fire models that predict fire growth in buildings. The cone calorimeter test is then described in some detail. Basic data generated in the cone calorimeter on the time to ignition and heat release rates are shown to be fundamental properties of wood products which can be useful as input to fire models for predicting fire growth in buildings. The report concludes with the recommendation that it would be useful to run an extensive set of cone calorimeter tests on SCL, glue-laminated timber and CLT products. The fundamental data could be most useful for validating models for predicting flame spread ratings of massive timber products and useful as input to comprehensive computer fire models that predict the course of fire in buildings. It is also argued that the cone calorimeter would be a useful tool in assessing fire performance during product development and for quality control purposes.
Online Access
Free
Resource Link
Less detail

BIM-Based Code Compliance Checking for Fire Safety in Timber Buildings: A Comparison of Existing Tools

https://research.thinkwood.com/en/permalink/catalogue2110
Year of Publication
2019
Topic
Design and Systems
Fire
Application
Wood Building Systems
Author
Kincelova, Kristina
Boton, Conrad
Blanchet, Pierre
Dagenais, Christian
Year of Publication
2019
Format
Conference Paper
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
BIM
Fire Safety
NBCC
Conference
Canadian Society for Civil Engineering
Research Status
Complete
Summary
The nature and the complexity of building codes, including the fire regulations, result in mainly manual verification and, therefore, in subjective potential interpretations or errors. In the case of timber construction, the fire safety regulations are moreover a challenge due to the combustibility of the material. Further integration of fire safety is needed during the design process in order to increase the reliability of the designs in terms of fire safety. Building information modelling (BIM) technologies offer today new tools for automating different tasks in the construction process. The different approaches and available tools have been therefore compared in the context of fire protection code compliance. For that matter, criteria applicable to the tools have been identified based on literature review and on the National Building Code of Canada prescriptive provisions, but also based on a practical manipulation of the available tools. The potential of the different tools is therefore assessed based on their integration of the fire protection concepts and on their adaptability to BIM. This contextualized comparison has shown that the fire protection integration in BIM is limited. The tools for performance-based fire protection design are not exploring enough the information contained by the building model that is beyond the geometry. The BIM-based compliance checking tools, in turn, contain insufficient space for fire safety regulations checking as advanced spatial study is required for this purpose. Thus, this paper demonstrates the need for further development in terms of exploiting the building models’ semantics in the fire protection context.
Online Access
Free
Resource Link
Less detail

Calculating structural fire resistance of wood-frame assemblies

https://research.thinkwood.com/en/permalink/catalogue3200
Year of Publication
2022
Topic
Fire
Application
Floors
Walls
Author
Dagenais, Christian
Chorlton, Bronwyn
Chen, Zhiyong
Organization
FPInnovations
Year of Publication
2022
Application
Floors
Walls
Topic
Fire
Keywords
Small Cross Section
Light Wood Frame
Research Status
Complete
Series
InfoNote
Summary
This InfoNote summarizes the verification and validation that the current design requirements of Annex B of CSA O86 can also be applied to small framing members used in unprotected and protected lightweight wood-frame assemblies, e.g., walls and floors. With minor editorial changes, the scope of application of Annex B of CSA O86 could include all wood and wood-based products listed in CSA O86, regardless of their original and residual dimensions.
Online Access
Free
Resource Link
Less detail

Comportement au Feu des Éléments de Charpente en Bois Lamellé-Croisé

https://research.thinkwood.com/en/permalink/catalogue1110
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Fire
Keywords
Fire Resistance
Research Status
Complete
Summary
Le bois lamellé-croisé (CLT), un système de construction relativement récent pour lequel l’intérêt ne cesse de croître dans le secteur de la construction d’Amérique du Nord, contribue à la définition d’une nouvelle classe de produits massifs en bois. Le CLT est un composant structural à base de bois très prometteur, qui présente un potentiel élevé pour fournir des solutions de construction rentables pour les bâtiments résidentiels, commerciaux et institutionnels ainsi que pour les grandes installations industrielles. L’acceptation de la construction en CLT dans l’environnement réglementaire canadien requiert la conformité aux dispositions relatives à la protection incendie du Code national du bâtiment du Canada (CNBC), entre autres choses. Des essais au feu approfondis ont démontré la capacité du CLT à fournir un degré de résistance au feu pouvant atteindre près de 3 heures lorsque le matériau est mis à l’essai dans des conditions de plein chargement conformément à la norme CAN/ULC S101. De plus amples renseignements sont également fournis sur les propriétés de sécurité incendie connexes, y compris l’indice de propagation des flammes et les dispositifs coupe-feu. Les éléments de CLT sont utilisés dans les systèmes de construction d’une façon similaire aux dalles de béton et aux éléments muraux massifs ainsi qu’aux éléments utilisés dans la construction en gros bois d’œuvre en limitant les vides de construction créés grâce à l’utilisation des éléments massifs en bois, ce qui contribue à réduire le risque d’incendies dans ces vides de construction. En outre, la construction en CLT utilise généralement des panneaux de CLT pour les planchers et les murs porteurs, ce qui permet d’obtenir une compartimentation ayant une résistance inhérente au feu et contribue une fois de plus à réduire le risque de la propagation d’un incendie au-delà de son point d’origine (compartiment d’origine). Le présent document propose une méthodologie visant à déterminer la résistance au feu des éléments de CLT. En tant que modèle déterministe fondé sur les concept de calculs aux états limites, cette méthode permet de calculer la résistance des éléments de CLT soumis à une exposition au feu standard (soit la norme CAN/ULC S101) à l’aide des mécanismes techniques de base du bois pour les calculs de résistance au feu allant jusqu’à 3 heures, qui ne sont limités que par la disponibilité actuelle des données. La méthode utilise un ajustement linéaire échelonné de la vitesse de carbonisation, une épaisseur de la couche carbonisée de 7 mm dont la résistance et la rigidité sont supposées nulles, un coefficient de résistance égal à l’unité, un coefficient de durée d’application de la charge de courte durée, et des résistances spécifiées ajustées à leurs valeurs moyennes pour prédire les temps moyens de résistance au feu des éléments de murs et planchers de CLT qui suivent étroitement les temps réels de résistance au feu des éléments testés. Bien que certaines améliorations à cette méthode soient encore possibles, ces comparaisons suggèrent que la méthodologie prédit de façon prudente la résistance au feu des éléments de CLT.
Online Access
Free
Resource Link
Less detail

48 records – page 1 of 5.