Skip header and navigation

2 records – page 1 of 1.

Assessment of Disproportionate Collapse for Multi Storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1664
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Mpidi Bita, Hercend
Currie, Neil
Tannert, Thomas
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Rotational Stiffness
Multi-Storey
Ductility
Loading
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3725-3733
Summary
This paper investigates the risk of disproportionate collapse following extreme loading events. The methodology mimics a sudden removal of a loadbearing wall of a twelve-storey CLT building. The ductility-demand from the dynamic simulation is checked against the ductility supplied by the structural components and their connections. The analyses focus on rotational stiffness (k) of the joints by considering three different sub-structural idealisations according to the required modelling details and the feasibility of model reductions. To resist the imposed dynamic forces, the required k-values may be too large to be practically achieved by means of off-the-shelf brackets and screw connections. Improved structural detailing as well as adequate thickness of structural elements need to be considered in order to reduce the probability of disproportionate collapse.
Online Access
Free
Resource Link
Less detail

Disproportionate Collapse Analysis of Mid-rise Cross-laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2181
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Author
Tannert, Thomas
Mpidi Bita, Hercend
Currie, Neil
Organization
University of British Columbia
University of Salford
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Topic
Design and Systems
Keywords
Progressive Collapse
Robustness
Structural Integrity
Redundancy
Reliability Analysis
Mid-Rise
Engineered Wood Product (EWP)
Research Status
Complete
Series
Structure and Infrastructure Engineering
Notes
DOI link: http://dx.doi.org/10.1080/15732479.2018.1456553
Summary
This paper investigates the structural behaviour of a twelve-storey Cross-Laminated Timber (CLT) building subjected to sudden removal of internal and external ground floor load-bearing walls, and computes the probability of disproportionate collapse. Analyses are carried out at three different structural idealisations, accounting for feasibility and complexity of finite elements models to understand their performance at: i) the global, ii) the component, and iii) the connection level. Focus is devoted on force and deformation-demands obtained from nonlinear dynamic analyses of the building. The demands are compared against the supply from common CLT panel sizes and the rotational stiffness (k) of the joints, detailed with off-the-shelf angle brackets and self-tapping screws. The study demonstrates that the applied forces and deformations required to develop resistance mechanisms are too large to be supplied by the proposed element and connection designs, if an internal ground floor wall is removed. The considered building has a probability of failure as high as 32% if designed without considerations of the complexities associated with disproportionate collapse. Consequently, to resist the effects of internal wall removal, the floors need to be redesigned and improved structural detailing with sufficient strength, stiffness, and ductility is necessary to trigger collapse resistance mechanisms.
Online Access
Free
Resource Link
Less detail