A major problem in light-weight timber floors is their insufficient performance coping with impact noise in low frequencies. There are no prefabricated solutions available in Australia and New Zealand. To rectify this and enable the implementation of light-weight timber floors, a structural floor was designed and built in laminated veneer lumber (LVL). The floor was evaluated in a laboratory setting based on its behaviour and then modified with suspended ceilings and different floor toppings. Twenty-nine different floor compositions were tested. The bare floor could not reach the minimum requirement set by the Building Code of Australia (BCA) but with additional layers, a sufficient result of R'w+Ctr 53 dB and L’nT,w + CI 50 dB was reached. Doubling of the concrete mass added a marginal improvement. With concrete toppings and suspended ceiling it is possible to reach the goal in airborne and impact sound insulation. The best result was achieved by combining of additional mass and different construction layers.
Over the last two decades many constitutive models with different degrees of accuracy have been developed for analysis of sawn timber and engineered wood products. However, most of the existing models for analysis of timber members are not particularly practical to implement, owing to the large number of material properties (and associated testing) required for calibration of the constitutive law. In order to overcome this limitation, this paper presents details of 1D, 2D and 3D non-linear fi nite element (FE) models that take advantage of a quasi-brittle material model, requiring a minimum number of material properties to capture the load-defl ection response and failure load of timber beams under 4-point bending. In order to validate the model, four tapered timber piles with circular cross-section (two plains and two retrofi tted with steel jacket) were tested and analysed with the proposed 3D FE modelling technique; and a good correlation between experimentally observed and numerically captured ultimate load was observed. Consequently, it was concluded that the developed FE models used in conjunction with the quasi-brittle constitutive law were able to adequately capture the failure load and load-defl ection response of the fl exural timber elements.
A Comparative Life Cycle Assessment Approach of Two Innovative Long Span Timber floors with its Reinforced Concrete Equivalent in an Australian Context
This paper discusses the design principles of timber connections for ductility with focus on laterally-loaded dowel-type fasteners. Timber connections are critical components of timber structures: not only do they join members, but they also affect load capacity, stiffness, and ductility of the overall system. Moreover, due to the brittle failure behaviour of timber when loaded in tension or shear, they are often the only source of ductility and energy dissipation in the structure in case of overloading, much like a fuse in an electrical circuit.
This paper addresses current challenges in connection design for ductility, reviews selected best-practice design approaches to ensure ductility in timber connections, suggests simple performance-based design criteria to design connections for ductility, and aims to stimulate a discussion around potential solutions to implement safe design principles for ductile connections in future design codes and connection testing regimes.
Medium rise commercial and multi-residential buildings (up to eight stories) represent significant markets that the timber industry can potentially penetrate. This is possible with the availability of advanced engineered wood product and ‘new generation’ composite structures. From the mid 2000’s, the University of Technology, Sydney (UTS), in partnership with universities and industry key-players in Australia and New Zealand – overseen by Structural Timber Innovation Company (STIC) – has been active in investigating innovative structural systems that utilise timber and provide a competitive alternative to steel and concrete solutions. Timber concrete composite (TCC) solutions have been gaining a lot of attention in Australia and New Zealand over the last few years. To address this emergence, researchers at UTS have focused on identifying and optimising TCC connections and outlining robust design procedure. This paper puts forward design guidelines that comply with Australian codes1
and give consideration for ultimate limit state (ULS) and serviceability limit state (SLS) design requirements. Fabrication provisions are also provided in order to secure a sound and successful implementation of TCC floor solutions.
This paper reports the results of experimental push-out tests on three different types of timber–concrete composite (TCC) connections, including normal screw, SFS and bird-mouth. The load-slip diagrams obtained from lab tests are employed to calculate the slip modulus of the connections for serviceability, ultimate and near collapse cases based on Eurocode 5 recommendations. Additionally, four full-scale TCC beams with normal screw, SFS and bird-mouth are constructed and tested under four-point bending within the serviceability load range to verify the slip modulus of connections which derived from the push-out tests. Further, based on the experimental results and using nonlinear regression, an analytical model each one of the connections is derived which can be easily incorporated into nonlinear FE analyses of TCC beams.
Innovative Engineered Timber Building Systems for Non-Residential Applications, Utilising Timber Concrete Composite Flooring Capable of Spanning Up to 8 to 10m
This project has developed technologies for prefabricated structural systems constructed from engineered wood products for floors and building frames, suitable for buildings up to eight stories in height. The project included the design of a virtual multi-storey timber building, a review of commercial flooring systems, and the development of interim design procedures for timber concrete composite (TCC) floors. Compared with either solid concrete or timber floors, TCC floors provide an excellent balance between increased stiffness, reduced weight, better acoustic separation and good thermal mass.
Outcomes from the project have confirmed TCC floors as a viable alternative to conventional flooring systems. The life cycle analysis of the virtual timber building has highlighted the potential advantages of timber-based building systems for commercial applications. The project also resulted in the formation of the Structural Timber Innovation Company, a research company that will continue to develop timber building systems in non-residential buildings in Australia and New Zealand.
A long term laboratory investigation on two six-meter-span timber composite beams was started from March 2012 at the University of Technology Sydney. These timber composites were made of laminated veneer lumber (LVL). The web and the flanges of the composite timber section were connected using screw-gluing technique. The specimens have been under sustained loads of (2.1kPa) and the environmental conditions was cyclically alternated between normal and very humid conditions whilst the temperature remained quasi constant (22 °C) –typical cycle duration was six to eight weeks. With regard to EC 5, the environmental conditions can be classified as service class 3 where the relative humidity of the air exceeds 85% and the moisture content of the timber samples reaches 20%. During the test, the mid-span deflection, moisture content of the timber beams and relative humidity of the air were continuously monitored. The paper presents the results and observations of the long-term test to-date and the test is continuing.
Australasian Conference on the Mechanics of Structures and Materials
Research Status
Complete
Notes
December 11-14, 2012, Sydney, Australia
Summary
Timber-concrete composite (TCC) beams are made up two materials, i.e. wood and concrete, which exhibit different behaviours under long-term loading. The time-dependent behaviour of TCC beam is not only affected by the long-term load but also driven by the variation of the environmental conditions such as temperature and relative humidity. In particular, the maximum deflection under service loads may govern the design requirement for medium to long span TCC beams subjected to heavy environmental conditions. For such structures, application of simplified methods adopted by different codes may lead to significant errors. Hence investigating the long-term behaviour of TCC beams subject to variable environmental condition is of great importance for designers and researchers. In this paper the research undertaken on long-term behaviour of TCC floors is critically reviewed and the recent findings are highlighted. The most important references in the literature were selected to provide more depth into the time-dependent performance of TCC structure.