Skip header and navigation

2 records – page 1 of 1.

Ability of Finger-Jointed Lumber to Maintain Load at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1832
Year of Publication
2018
Topic
Fire
Material
Other Materials
Author
Rammer, Douglas
Zelinka, Samuel
Hasburgh, Laura
Craft, Steven
Publisher
Forest Products Laboratory
Year of Publication
2018
Format
Journal Article
Material
Other Materials
Topic
Fire
Keywords
Small Scale
Full Scale
Bending Test
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Creep
Polyurethane
Polyvinyl Acetate
Temperature
Durability
Research Status
Complete
Series
Wood and Fiber Science. 50(1): 44-54.
Summary
This article presents a test method that was developed to screen adhesive formulations for finger-jointed lumber. The goal was to develop a small-scale test that could be used to predict whether an adhesive would pass a full-scale ASTM E119 wall assembly test. The method involved loading a 38-mm square finger-jointed sample in a four-point bending test inside of an oven with a target sample temperature of 204°C. The deformation (creep) was examined as a function of time. It was found that samples fingerjointed with melamine formaldehyde and phenol resorcinol formaldehyde adhesives had the same creep behavior as solid wood. One-component polyurethane and polyvinyl acetate adhesives could not maintain the load at the target temperature measured middepth of the sample, and several different types of creep behavior were observed before failure. This method showed that the creep performance of the onecomponent adhesives may be quite different than the performance from short-term load deformation curves collected at high temperatures. The importance of creep performance of adhesives in the fire resistance of engineered wood is discussed.
Online Access
Free
Resource Link
Less detail

Predicting the Fire Resistance of Cross-Laminated Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue1865
Year of Publication
2012
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Craft, Steven
Desjardins, Richard
Bénichou, Noureddine
Organization
National Research Council of Canada
Publisher
National Research Council Canada. Construction
Year of Publication
2012
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
Assembly
Panels
Full-Scale Fire Test
Full-Scale
Research Status
Complete
Summary
There is growing interest from the Canadian wood products industry to produce and use cross-laminated timber (CLT) panels in construction. Because this is a new product in North America, there is a need to demonstrate that the product meets various performance attributes such as structural resistance, sound transmission and fire resistance. This research aims to address two primary objectives which will support the North American adoption of CLT. First, a generic calculation method for determining the fire-resistance of CLT assemblies is needed to enable producers to manufacture a number of different configurations of panels without the need to run a large number of full-scale fire tests. Second, the CLT assemblies chosen for testing have been identified as the most likely configurations to be used thereby providing test data to support the claims of fire-resistance to help satisfy the authority having jurisdiction.
Online Access
Free
Resource Link
Less detail