Skip header and navigation

5 records – page 1 of 1.

An Exploration into Tornado Resistant Residential CLT Structures

https://research.thinkwood.com/en/permalink/catalogue2111
Year of Publication
2019
Topic
Wind
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Development and Promotion of Mass Timber Noise Barriers for Highways 

https://research.thinkwood.com/en/permalink/catalogue2631
Topic
Market and Adoption
Application
Industrial Application
Organization
Clemson University
Application
Industrial Application
Topic
Market and Adoption
Keywords
Noise Barrier
Sound Barrier
Research Status
In Progress
Notes
Project contact is Patricia Layton at Clemson University
Summary
The mass timber and wood products industries must innovate new mass timber products that will utilize untapped timber from national, state and private forest lands, and provide ongoing work to mass timber manufacturers between larger building construction projects. Mass timber noise barriers have the potential to fulfill this need and, in turn, boost the economy. Through this proposed project we intend to produce, install and ultimately test this sustainable system in various regions of the U.S.
Less detail

Enable the Use of Mass Timber Products for Non-Residential Buildings in High Velocity Hurricane Zone

https://research.thinkwood.com/en/permalink/catalogue2630
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Clemson University
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Wind
Keywords
High Velocity Hurricane Zone
Wind Load
Debris Impact Testing
Non-Residential
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Weichiang Pang at Clemson University
Summary
The overall goal of this project is to enable the use of cross laminated timber (CLT) to construct commercial and other non-residential buildings in High Velocity Hurricane Zone (HVHZ). The 1992 Hurricane Andrew exposed the shortcomings of existing building codes. Recognizing this shortcomings, the Florida Building Code (FBC) incorporated new enhanced provisions which specifically require that the entire building envelope, including the wall and roof systems, must be impact resistant in HVHZ. Currently, CLT is not in the database of a list of building envelope products that comply with the HVHZ standard. The specific objectives of this project are (1) to qualify PRG-320 compliance CLT panels for HVHZ standard by conducting FBC debris impact and wind pressure cyclic tests; (2) to conduct education and outreach sessions to promote the use of CLT in HVHZ, and (3) to identify possible construction projects that may utilize CLT as the building envelope and promote the use of CLT in those projects. The test results generated in this project will be used specifically to gain HVHZ building code approval.
Less detail

Hollow Massive Timber Panels: A High-Performance, Long-Span Alternative to Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue701
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Montgomery, William
Organization
Clemson University
Year of Publication
2014
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Hollow Massive Timber
Pine
Shear Tests
Screws
Emulsion Polymer Isocyanate
Long Span
Research Status
Complete
Summary
Since the development of Cross Laminated Timber (CLT), there has been a surge in interest in massive timber buildings. Furthermore, recent conceptual and feasibility designs of massive timber towers of 30 or more stories indicate that performance of mass timber structural elements can compete with other building materials in the commercial industry (MGB Architecture and Design et al.). However, in order for massive timber to penetrate the commercial market even further, a solution is needed for long-span massive timber floor systems. Unfortunately, CLT falls short in this area and is unable to span long distances. The hollow massive timber (HMT) panel presented in this thesis offers one potential long-span solution.
Online Access
Free
Resource Link
Less detail

Simulated Performance of Cross-Laminated Timber Residential Structures Subject to Tornadoes

https://research.thinkwood.com/en/permalink/catalogue2973
Year of Publication
2020
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Stoner, Michael
Pang, Weichiang
Organization
Clemson University
Publisher
Frontiers
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Wind
Keywords
Tornado
Structural Performance
Load Path
Fragility Analysis
Residential Construction
Research Status
Complete
Series
Frontiers in Built Environment
Summary
Tornadoes are some of the most severe and devastating natural events and cause significant damage to structures in the United States. Light-frame wood residential structures have shown vulnerabilities to these events, but they are not explicitly addressed in the design requirements due to their infrequent occurrence, relatively small impact area (compared to hurricanes), and complex wind profile. This paper explores the potential of Cross-Laminated Timber (CLT) to serve as a residential building material, specifically with regards to its performance in tornado events. CLT is an engineered wood product made when orthogonal layers of dimensioned lumber are glued to create panels. To compare the tornado performance of CLT buildings, six archetype residential buildings were each designed using CLT and light-frame wood in accordance to the appropriate US building code provisions and engineering principles. The capacity of each of the structural components was simulated using Monte Carlo Simulation based on the panel spans and connections of the panel boundaries. In addition, the resistance to structure sliding and combined uplift and overturning was simulated using engineering principles based on the load path of a CLT residential structure. Analysis of tornado induced wind loading was performed using recommendations from the 2016 ASCE-7 commentary and applicable literature that attempts to account for the wind-induced pressures caused by tornadoes. Fragility analysis was performed to determine the probability of failure for a given estimated tornado wind-speed. When compared to the wind speeds of the Enhanced Fujita (EF) scale, the CLT residential archetypes showed wind speeds resulting in 10% probability of failure were in the range of EF-4 level events. Factors such as the connection spacing, and roof panel spans had the most significant effect on the simulated performance of the residential archetypes. Thicker panels, more robust connections, or tighter connection spacing could also lead to residential CLT structures that withstand EF-5 level events.
Online Access
Free
Resource Link
Less detail