Skip header and navigation

13 records – page 1 of 2.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Analytical Models for Balloon-Type CLT Shear Walls

https://research.thinkwood.com/en/permalink/catalogue1877
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Lateral Loads
Shear
Mass Timber
Language
English
Research Status
Complete
Summary
Lack of research and design information for the seismic performance of balloon-type CLT shear walls prevents CLT from being used as an acceptable solution to resist seismic loads in balloon-type mass-timber buildings. To quantify the performance of balloon-type CLT structures subjected to lateral loads and create the research background for future code implementation of balloon-type CLT systems in CSA O86 and NBCC, FPInnovations initiated a project to determine the behaviour of balloon-type CLT construction. A series of tests on balloon-type CLT walls and connections used in these walls were conducted. Analytical models were developed based on engineering principles and basic mechanics to predict the deflection and resistance of the balloon-type CLT shear walls. This report covers the work related to development of the analytical models and the tests on balloon-type CLT walls that the models were verified against.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Language
English
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

Expanding Wood Use Towards 2025: Seismic Performance of Braced Mass Timber Frames, Year 2

https://research.thinkwood.com/en/permalink/catalogue2597
Year of Publication
2020
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Chen, Zhiyong
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Seismic Performance
Connections
Connection Systems
Multi-Story
Language
English
Research Status
Complete
Summary
Braced timber frames (BTFs) are one of the most efficient structural systems to resist lateral loads induced by earthquakes or high winds. Although BTFs are implemented as a system in the National Building Code of Canada (NBCC), no design guidelines currently exist in CSA O86. That not only leaves these efficient systems out of reach of designers, but also puts them in danger of being eliminated from NBCC. The main objective of this project is to generate the technical information needed for development of design guidelines for BTFs as a lateral load resisting system in CSA O86. The seismic performance of 30 BTFs with riveted connections was studied last year by conducting nonlinear dynamic analysis; and also 15 glulam brace specimens using bolted connections were tested under cyclic loading. In the second year of the project, a relationship between the connection and system ductility of BTFs was derived based on engineering principles. The proposed relationship was verified against the nonlinear pushover analysis results of single- and multi-storey BTFs with various building heights. The influence of the connection ductility, the stiffness ratio, and the number of tiers and storeys on the system ductility of BTFs was investigated using the verified relationship. The minimum connection ductility for different categories (moderately ductile and limited ductility) of BTFs was estimated.
Online Access
Free
Resource Link
Less detail

Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1221
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Material
LSL (Laminated Strand Lumber)
Application
Shear Walls
Hybrid Building Systems

Performance-Based Approach to Support Tall and Large Wood Buildings: Fire and Seismic Performance

https://research.thinkwood.com/en/permalink/catalogue1982
Year of Publication
2017
Topic
Design and Systems
Fire
Seismic
Application
Wood Building Systems
Author
Dagenais, Christian
Chen, Zhiyong
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Application
Wood Building Systems
Topic
Design and Systems
Fire
Seismic
Keywords
Performance Based Design
National Building Code of Canada
Language
English
Research Status
Complete
Summary
The objective of the current project is to develop a performance-based design process for wood-based design systems that would meet the objectives and functional statements set forth in the National Building Code of Canada. More specifically, this report discusses the fire and seismic performance of buildings, as identified as a priority in a previous FPInnovations report (Dagenais, C. (2016). Development of Performance Criteria for Wood-Based Building Systems).
Online Access
Free
Resource Link
Less detail

Seismic Design and Analysis of a 20-Storey Demonstration Wood Building

https://research.thinkwood.com/en/permalink/catalogue667
Year of Publication
2015
Topic
Design and Systems
Seismic
Application
Hybrid Building Systems
Author
Chen, Zhiyong
Chui, Ying Hei
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Nonlinear time history analysis
Demonstration Building
Finite Element Model
Wood-Steel
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
This paper presents the seismic design and analysis of a 20-storey demonstration wood building, which was conducted as a part of the NEWBuildS tall wood building design project. A hybrid lateral load resisting system was chosen for the building. The syst...
Online Access
Payment Required
Resource Link
Less detail

Seismic Performance of Post-Tensioned Moment-Resisting Portal Frames

https://research.thinkwood.com/en/permalink/catalogue1973
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Wood Building Systems

Seismic Response of Mid-Rise Wood-Frame Buildings on Podium

https://research.thinkwood.com/en/permalink/catalogue2604
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Chen, Zhiyong
Ni, Chun
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Earthquake
Seismic Performance
Mid-Rise
Podium Structures
Stiffness
Language
English
Research Status
Complete
Summary
An analytical study to examine the seismic performance of wood-frame podium buildings up to 8 storeys is presented in this report. Simple archetype podium buildings of 5 to 8 storeys in total height were designed in accordance with the two-step analysis procedure given in 2015 NBCC or ASCE 7-10. Nonlinear time-history dynamic analyses were conducted using earthquake ground motions selected and scaled based on the guidelines proposed by Tremblay et al. to match the reference design spectra in NBCC. Using the performance-based seismic design criteria established in the NEESWood project, it was found that: Podium buildings with a building period ratio of 1.1 (ASCE 7-10) did not meet the performance criteria, thus the period ratio requirement of 1.1 was not appropriate. A stiffness ratio of not less than 10 times (ASCE 7-10) was more appropriate as a requirement of using two-step analysis procedure for wood-frame podium buildings up to 8 storeys, compared to that of not less than 3 times (NBCC Commentary). With a higher stiffness ratio, the seismic response of the upper wood-frame structure of podium building was closer to that of the pure wood-frame structure. The results of this study will be used to guide the assessment of the feasibility of constructing wood-frame podium buildings of 8 storeys in height and the development of design guidelines. This would also guide the longer-term goal of proposing changes to the building codes.
Online Access
Free
Resource Link
Less detail

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: Numerical Models for Post-Tensioned Shear Wall System with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue2601
Year of Publication
2019
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2019
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Design and Systems
Seismic
Keywords
Pres-Lam
Seismic Design
Earthquake
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy in modern urban centers have moved towards the development of new types of so called “resilient” or “low damage” structural systems. Such systems reduce the damage to the structure during an earthquake while offering the same or higher levels of safety to occupants. One such structural system in mass timber construction is the “Pres-Lam” system developed by Structural Timber Innovation Company (STIC) and Prestressed Timber Limited (PTL), both from New Zealand. FPInnovations has acquired the Intellectual Property rights for the Pres-Lam system for use in Canada and the United States.
Online Access
Free
Resource Link
Less detail

13 records – page 1 of 2.