Skip header and navigation

6 records – page 1 of 1.

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High Rise Project

https://research.thinkwood.com/en/permalink/catalogue1671
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Breneman, Scott
McDonnell, Eric
Zimmerman, Reid
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
US
Diaphragm
Model
High-Rise
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3844-3852
Summary
A candidate CLT diaphragm analysis model approach is presented and evaluated as an engineering design tool motivated by the needs of seismic design in the United States. The modeling approach consists of explicitly modeling CLT panels as discrete orthotropic shell elements with connections between panels and connections from panels to structural framing modelled as two-point springs. The modeling approach has been compared to a developed CLT diaphragm design example based on U.S. standards showing the ability to obtain matching deflection results. The sensitivity of the deflection calculations to considering CLT panel-to-panel connection gap closure is investigated using a simple diaphragm example. The proposed modeling approach is also applied to the candidate floor diaphragm design for the Framework project, one of the two U.S. Tall Wood Building Prize Competition winners, currently under design. Observations from this effort are that the proposed method, while a more refined model than typically used during building design, shows promise to meet the needs of innovative CLT seismic designs where appropriate simpler diaphragm models are not available.
Online Access
Free
Resource Link
Less detail

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High-Rise Project

https://research.thinkwood.com/en/permalink/catalogue1710
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Author
Breneman, Scott
McDonnell, Eric
Zimmerman, Reid
Organization
WoodWorks
Year of Publication
2017
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Topic
Design and Systems
Seismic
Keywords
US
Model
Diaphragm
High-Rise
Research Status
Complete
Summary
A candidate cross-laminated timber (CLT) diaphragm analysis model approach is presented and evaluated as an engineering design tool motivated by the needs of seismic design in the United States. the modeling approach consists of explicitly modeling CLT panels as discrete orthotropic shell elements with connections between panels and connections from panels to structural framing modeled as two-point springs. The modeling approach has been compared to a developed CLT diapragm design example based on the US standards showing the ability to obtain matching deflection results. The sensitivity of the deflection calculations considering CLT panel-to-panel connection gap closure is investigated using a simple diaphragm example. the proposed modeling approach is also applied to the candidate floor diaphragm design for the Framework project, a winner of the US Tall Wood Building Prize Competition, currently under design. Observations from this effort are that the proposed method, while a more refined model than typically used during building design, shows promise to meet the needs of innovative CLT seismic designs where appropriate simpler diapragm models are not available.
Online Access
Free
Resource Link
Less detail

CLT Diaphragm Design for Wind and Seismic Resistance

https://research.thinkwood.com/en/permalink/catalogue2967
Year of Publication
2022
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Breneman, Scott
McDonnell, Eric
Tremayne, Donovan
Houston, Jonas
Gu, Mengzhe
Zimmerman, Reid
Montgomery, Graham
Organization
WoodWorks
Holmes
KPFF Consulting Engineers
Timberlab
Publisher
WoodWorks
Year of Publication
2022
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Seismic
Keywords
Diaphragm
Shear Capacity
Diaphragm Flexibility
Panel-to-Panel Connections
Research Status
Complete
Summary
Cross-laminated timber (CLT) has become increasingly prominent in building construction and can be seen in buildings throughout the world. Specifically, the use of CLT floor and roof panels as a primary gravity force-resisting component has become relatively commonplace. Now, with availability of the 2021 Special Design Provisions for Wind and Seismic (SDPWS 2021) from the American Wood Council (AWC), U.S. designers have a standardized path to utilize CLT floor and roof panels as a structural diaphragm. Prior to publication of this document, projects typically had to receive approval to use CLT as a structural diaphragm on a case-by-case basis from the local Authority Having Jurisdiction (AHJ). This paper highlights important provisions of SDPWS 2021 for CLT diaphragm design and recommendations developed by the authors in the upcoming CLT Diaphragm Design Guide, based on SDPWS 2021.
Online Access
Free
Resource Link
Less detail

Design Example of a Cantilever Wood Diaphragm

https://research.thinkwood.com/en/permalink/catalogue3033
Year of Publication
2019
Topic
Mechanical Properties
Application
Shear Walls
Author
Malone, R. Terry
Breneman, Scott
Organization
WoodWorks
Year of Publication
2019
Format
Document
Application
Shear Walls
Topic
Mechanical Properties
Keywords
Shear Wall
Diaphragm
Lateral Force Resisting System
Research Status
Complete
Summary
Complex building shapes and footprints are driving design procedures and code requirements to evolve for all lateral force-resisting systems and materials. As buildings get taller and more complex, there is a greater need to understand the relative stiffness of diaphragms and shear walls, and multi-story shear wall effects. Architecturally demanding exterior wall lines in modern structures do not always provide opportunities to use traditional design approaches. The goal of this paper is to provide an example of how to analyze a single-story structure with a double cantilever diaphragm and help engineers better understand the code and standards issues associated with these types of structures.
Online Access
Free
Resource Link
Less detail

Fire Design of Mass Timber Members

https://research.thinkwood.com/en/permalink/catalogue2929
Year of Publication
2019
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Wood Building Systems
Author
McLain, Richard
Breneman, Scott
Organization
WoodWorks
Year of Publication
2019
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Mass Timber
Code Applications
Construction Types
Fire Resistance Rating
Concealed Spaces
Penetrations
Research Status
Complete
Summary
For many years, exposed heavy timber framing elements have been permitted in U.S. buildings due to their inherent fire-resistance properties. The predictability of wood’s char rate has been well-established for decades and has long been recognized in building codes and standards. Today, one of the exciting trends in building design is the growing use of mass timber—i.e., large solid wood panel products such as cross-laminated timber (CLT) and nail-laminated timber (NLT)—for floor, wall and roof construction. Like heavy timber, mass timber products have inherent fire resistance that allows them to be left exposed and still achieve a fire-resistance rating. Because of their strength and dimensional stability, these products also offer an alternative to steel, concrete, and masonry for many applications, but have a much lighter carbon footprint. It is this combination of exposed structure and strength that developers and designers across the country are leveraging to create innovative designs with a warm yet modern aesthetic, often for projects that go beyond traditional norms. This paper has been written to support architects and engineers exploring the use of mass timber for commercial and multi-family construction. It focuses on how to meet fire-resistance requirements in the International Building Code (IBC), including calculation and testing-based methods. Unless otherwise noted, references refer to the 2018 IBC.
Online Access
Free
Resource Link
Less detail

Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2928
Year of Publication
2019
Topic
General Information
Application
Wood Building Systems
Author
Breneman, Scott
Timmers, Matt
Richardson, Dennis
Organization
WoodWorks
Year of Publication
2019
Format
Report
Application
Wood Building Systems
Topic
General Information
Keywords
IBC
Fire-resistance Rating
Noncombustible Protection
Allowable Building Sizes
Research Status
Complete
Summary
In January 2019, the International Code Council (ICC) approved a set of proposals to allow tall wood buildings as part of the 2021 International Building Code (IBC). Based on these proposals, the 2021 IBC will include three new construction types—Type IV-A, IV-B and IV-C—allowing the use of mass timber or noncombustible materials. These new types are based on the previous Heavy Timber construction type (renamed Type IV-HT) but with additional fire-resistance ratings and levels of required noncombustible protection. The code will include provisions for up to 18 stories of Type IV-A construction for Business and Residential Occupancies. Based on information first published in the Structural Engineers Association of California (SEAOC) 2018 Conference Proceedings, this paper summarizes the background to these proposals, technical research that supported their adoption, and resulting changes to the IBC and product-specific standards.
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.