Skip header and navigation

5 records – page 1 of 1.

Ambient Vibration Testing and Modal Analysis of Multi-Storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue237
Year of Publication
2014
Topic
Acoustics and Vibration
Wind
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Reynolds, Thomas
Bolmsvik, Åsa
Vessby, Johan
Chang, Wen-Shao
Harris, Richard
Bawcombe, Jonathan
Bregulla, Julie
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Serviceability
Keywords
Modal Properties
Multi-Storey
Damping
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The ambient movement of three modern multi-storey timber buildings has been measured and used to determine modal properties. This information, obtained by a simple, unobtrusive series of tests, can give insights into the structural performance of these forms of building, as well as providing information for the design of future, taller timber buildings for dynamic loads. For two of the buildings, the natural frequency has been related to the lateral stiffness of the structure, and compared with that given by a simple calculation. In future tall timber buildings, a new design criterion is expected to become important: deflection and vibration serviceability under wind load. For multi-storey timber buildings there is currently no empirical basis to estimate damping for calculation of wind-induced vibration, and there is little information for stiffness under wind load. This study therefore presents a method to address those gaps in knowledge.
Online Access
Free
Resource Link
Less detail

Building Higher with Light-Weight Timber Structures: The Effect of Wind Induced Vibrations

https://research.thinkwood.com/en/permalink/catalogue89
Year of Publication
2015
Topic
Acoustics and Vibration
Wind
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Bolmsvik, Åsa
Jarnerö, Kirsi
Olsson, Jörgen
Reynolds, Thomas
Organization
Inter-noise
Year of Publication
2015
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Keywords
Mid-Rise
High-Rise
Vibration Properties
Conference
Inter-noise 2015
Research Status
Complete
Notes
August 9-12, 2015, San Francisco, California, USA
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-to-high-rise buildings with light-weight timber structure have been designed and built. Examples of such are the 8-storey building Limnologen in Växjö, Sweden, the 9- storey Stadthaus in London, UK and being constructed at the moment, the 14-storey building Treet in Bergen, Norway. These are all light-weight and flexible structures which raise questions regarding the wind induced vibrations. For the building in Norway, the calculated vibration properties of the top floor are on the limit of being acceptable according to the ISO 101371 vibration criteria for human comfort. This paper will give a review of building systems for medium-to-high-rise timber buildings. Measured vibration properties for some medium-to-high-rise timber buildings will also be presented. These data have been used for calculating the peak acceleration values for two example buildings for comparison with the ISO standards. An analysis of the acceleration levels for a building with double the height has also been performed showing that designing for wind induced vibrations in higher timber buildings is going to be very important and that more research into this area is needed.
Online Access
Free
Resource Link
Less detail

Effect of Flexible Supports on Vibration Performance of Timber Floors

https://research.thinkwood.com/en/permalink/catalogue190
Year of Publication
2012
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Jarnerö, Kirsi
Bolmsvik, Åsa
Brandt, Anders
Olsson, Anders
Organization
Euronoise
Year of Publication
2012
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Residential
Multi-Storey
Noise
Prefabrication
In Situ
Vibration
Damping
Interlayer
Conference
Ninth European Conference on Noise Control (Euronoise)
Research Status
Complete
Notes
June 10-13, 2012, Prague, Czech Republic
Summary
In residential multi-storey buildings of timber it is of great importance to reduce the flanking transmission of noise. Some building systems do this by installing a vibration-damping elastic interlayer, Sylomer or Sylodyn , in the junction between the support and the floor structure. This interlayer also improves the floor vibration performance by adding damping to the structure. In the present work the vibration performance of a floor with such interlayers has been investigated both in laboratory and field tests. A prefabricated timber floor element was tested in laboratory on rigid supports and on supports with four different types of interlayers. The results are compared with in situ tests on a copy of the same floor element. The effect on vibration performance i.e. frequencies, damping ratio and mode shapes is studied. A comparison of the in situ test and the test with elastic interlayer in laboratory shows that the damping in situ is approximately three times higher than on a single floor element in the lab. This indicates that the damping in situ is affected be the surrounding building structure. The achieved damping ratio is highly dependent on the mode shapes. Mode shapes that have high mode shape coefficients along the edges where the interlayer material is located, result in higher modal damping ratios. The impulse velocity response, that is used to evaluate the vibration performance and rate experienced annoyance in the design of wooden joist floors, seems to be reduced when adding elastic layers at the supports.
Online Access
Free
Resource Link
Less detail

Model Calibration of Wooden Structure Assemblies - Using EMA and FEA

https://research.thinkwood.com/en/permalink/catalogue638
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Bolmsvik, Åsa
Linderholt, Andreas
Olsson, Jörgen
Year of Publication
2014
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Experimental Modal Analysis
Finite Element Model
Sound Transmission
Vibrational Tests
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
To predict and, when needed to fulfil regularizations or other requirements, lower the impact sound transmission in light weight buildings prior to building, dynamically representative calculation models are needed. The material properties of commonly used building components have a documented spread in literature. Therefore, to validate the junction models, the dynamics of the actual assembly components have to be known. Here, the dynamic properties of a number of component candidates are measured using hammer excited vibrational tests. The spread of the properties of the components are hereby gained. Some of the components are selected to build up wooden assemblies which are evaluated first when they are screwed together and later when they are screwed and glued together. The focus is here on achieving representative finite element models of the junctions between the building parts composing the assemblies.
Online Access
Free
Resource Link
Less detail

Model Calibration of Wooden Strucuture Assemblies - Using EMA and FEA

https://research.thinkwood.com/en/permalink/catalogue1001
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Bolmsvik, Åsa
Linderholt, Andreas
Olsson, Jörgen
Year of Publication
2014
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Finite Element Model
Experimental Modal Analysis
Impact Sound Transmission
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
To predict and, when needed to fulfil regularizations or other requirements, lower the impact sound transmission in light weight buildings prior to building, dynamically representative calculation models are needed. The material properties of commonly used building components have a documented spread in literature. Therefore, to validate the junction models, the dynamics of the actual assembly components have to be known. Here, the dynamic properties of a number of component candidates are measured using hammer excited vibrational tests. The spread of the properties of the components are hereby gained. Some of the components are selected to build up wooden assemblies which are evaluated first when they are screwed together and later when they are screwed and glued together. The focus is here on achieving representative finite element models of the junctions between the building parts composing the assemblies.
Online Access
Free
Resource Link
Less detail