Skip header and navigation

5 records – page 1 of 1.

BIM-Based Code Compliance Checking for Fire Safety in Timber Buildings: A Comparison of Existing Tools

https://research.thinkwood.com/en/permalink/catalogue2110
Year of Publication
2019
Topic
Design and Systems
Fire
Application
Wood Building Systems

Collaboration Enables Innovative Timber Structure Adoption in Construction

https://research.thinkwood.com/en/permalink/catalogue2007
Year of Publication
2018
Topic
Market and Adoption
Application
Wood Building Systems
Author
Gosselin, Annie
Blanchet, Pierre
Lehoux, Nadia
Cimon, Yan
Publisher
MDPI
Year of Publication
2018
Country of Publication
Switzerland
Format
Journal Article
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Supply Chain
Construction
Prefabrication
Procurement
Language
English
Research Status
Complete
Series
Buildings
ISSN
2075-5309
Online Access
Free
Resource Link
Less detail

Fire Safety in Tall Timber Building: A BIM-Based Automated Code-Checking Approach

https://research.thinkwood.com/en/permalink/catalogue2664
Year of Publication
2020
Topic
Fire
Design and Systems
Application
Wood Building Systems
Author
Kincelova, Kristina
Boton, Conrad
Blanchet, Pierre
Dagenais, Christian
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
BIM
Fire Safety
Building Code
Visual Programming
Compliance Checking
Language
English
Research Status
Complete
Series
Buildings
Summary
Fire safety regulations impose very strict requirements on building design, especially for buildings built with combustible materials. It is believed that it is possible to improve the management of these regulations with a better integration of fire protection aspects in the building information modeling (BIM) approach. A new BIM-based domain is emerging, the automated code checking, with its growing number of dedicated approaches. However, only very few of these works have been dedicated to managing the compliance to fire safety regulations in timber buildings. In this paper, the applicability to fire safety in the Canadian context is studied by constituting and executing a complete method from the regulations text through code-checking construction to result analysis. A design science approach is used to propose a code-checking method with a detailed analysis of the National Building Code of Canada (NBCC) in order to obtain the required information. The method starts by retrieving information from the regulation text, leading to a compliance check of an architectural building model. Then, the method is tested on a set of fire safety regulations and validated on a building model from a real project. The selected fire safety rules set a solid basis for further development of checking rules for the field of fire safety. This study shows that the main challenges for rule checking are the modeling standards and the elements’ required levels of detail. The implementation of the method was successful for geometrical as well as non-geometrical requirements, although further work is needed for more advanced geometrical studies, such as sprinkler or fire dampers positioning.
Online Access
Free
Resource Link
Less detail

Modeling the Impact of Assembly Tolerances Regarding Air Leaks on the Energy Efficiency and Durability of a Cross-Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue2365
Year of Publication
2019
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Martin, Ulysse
Blanchet, Pierre
Potvin, André
Publisher
North Carolina State University
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Design and Systems
Keywords
Energy Efficiency
Air Leakage
HAM Analysis
Durability Assessment
Language
English
Research Status
Complete
Series
BioResources
Summary
Air leaks have a considerable impact on the energy load and durability of buildings, particularly in cold climates. In wood construction using cross-laminated timber (CLT), air leaks are most likely to be concentrated at the joints between panels and other elements. This study used simulations of heat, air, and moisture transfers through a gap between two CLT panels causing air leakage in winter conditions under a cold climate. A real leakage occurrence was sized to validate the simulations. The aim of this work was to assess the impact on the energy loads and the durability of an air leak, as either infiltration or exfiltration, for different gap widths and relative humidity levels. The results showed that infiltrations had a greater impact on the energy load than exfiltrations but did not pose a threat to the durability, as opposed to exfiltrations. Gap sizes in CLT may vary, but the effect on the energy load was sensitive to the leakage path in the rest of the wall. As expected, a combination of winter exfiltration and a high level of interior relative humidity was particularly detrimental.
Online Access
Free
Resource Link
Less detail

Use of Northern Hardwoods in Glued-laminated Timber: A Study of Bondline Shear Strength and Resistance to Moisture

https://research.thinkwood.com/en/permalink/catalogue2427
Year of Publication
2019
Topic
Moisture
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems