Skip header and navigation

4 records – page 1 of 1.

Design of Post-Tensioned Timber Beams for Fire Resistance

https://research.thinkwood.com/en/permalink/catalogue4
Year of Publication
2012
Topic
Design and Systems
Fire
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Buchanan, Andrew
Abu, Anthony
Carradine, David
Moss, Peter
Spellman, Phillip
Year of Publication
2012
Country of Publication
Switzerland
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Design and Systems
Fire
Keywords
Full Scale
Furnace Tests
Post-Tensioned
Box Beams
Vertical Loads
Failure
Language
English
Conference
International Conference on Structures in Fire
Research Status
Complete
Notes
June 6-8, 2012, Zurich, Switzerland
Summary
This paper describes a series of three full-scale furnace tests on post-tensioned LVL box beams loaded with vertical loads, and presents a proposed fire design method for post-tensioned timber members. The design method is adapted from the calculation methods given in Eurocode 5 and NZS:3603 which includes the effects of changing geometry and several failure mechanisms specific to posttensioned timber. The design procedures include an estimation of the heating of the tendons within the timber cavities, and relaxation of post-tensioning forces. Additionally, comparisons of the designs and assumptions used in the proposed fire design method and the results of the full-scale furnace tests are made. The experimental investigation and development of a design method have shown several areas which need to be addressed. It is important to calculate shear stresses in the timber section, as shear is much more likely to govern compared to solid timber. The investigation has shown that whilst tensile failures are less likely to govern the fire design of post-tensioned timber members, due to the axial compression of the post-tensioning, tensile stresses must still be calculated due to the changing centroid of the members as the fire progresses. Research has also highlighted the importance of monitoring additional deflections and moments caused by the high level of axial loads.
Online Access
Free
Resource Link
Less detail

Full-Scale Fire Tests of Post-Tensioned Timber Beams

https://research.thinkwood.com/en/permalink/catalogue257
Year of Publication
2012
Topic
Fire
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Spellman, Phillip
Carradine, David
Abu, Anthony
Moss, Peter
Buchanan, Andrew
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Fire
Keywords
Failure Mechanisms
Steel Anchorage
Full Scale
Furnace Tests
Post-Tensioned
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 15-19, 2012, Auckland, New Zealand
Summary
: This paper describes a series of full-scale furnace tests on loaded post tensioned LVL beams. Each beam was designed to exhibit a specific failure mechanism when exposed to the standard ISO834 fire. In addition to the beams a number of steel anchorage protection schemes were also investigated. These included wrapping the ends in kaowool, using intumescent paint, covering the anchorage with fire rated plasterboard and covering the anchorage with timber (LVL). The results of the full-scale tests cover temperature distributions through the timber members during the tests, the temperatures reached within the cavity and those of the tendons suspended within the cavity, the relaxation of the tendons during the test, the failure mechanisms experienced, and a summary of the anchorage protection details and their effectiveness. Recommendations for the design of both post-tensioned timber beams and associated anchorages are also provided.
Online Access
Free
Resource Link
Less detail

Modelling the Fire Performance of Structural Timber Floors

https://research.thinkwood.com/en/permalink/catalogue212
Year of Publication
2012
Topic
Design and Systems
Fire
Material
Timber-Concrete Composite
Application
Floors
Author
O'Neill, James
Abu, Anthony
Carradine, David
Moss, Peter
Buchanan, Andrew
Year of Publication
2012
Country of Publication
Switzerland
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Fire
Keywords
Failure Mechanisms
Finite Element Model
Fire Resistance
Thermo-mechanical
Full Scale
Language
English
Conference
International Conference on Structures in Fire
Research Status
Complete
Notes
June 6-8, 2012, Zurich, Switzerland
Summary
This paper describes numerical modelling to predict the fire resistance of engineered timber floor systems. The floor systems under investigation are timber composite floors (various timber joist and box floor cross sections), and timber-concrete composite floors. The paper describes 3D numerical modelling of the floor systems using finite element software, carried out as a sequential thermo-mechanical analysis. Experimental testing of these floor assemblies is also being undertaken to calibrate and validate the models, with a number of full scale tests to determine the failure mechanisms for each floor type and assess fire damage to the respective system components. The final outcome of this research will be simplified design methods for calculating the fire resistance of a wide range of engineered timber floor systems.
Online Access
Free
Resource Link
Less detail

Shear Strength of LVL Box Beams in Fire Conditions

https://research.thinkwood.com/en/permalink/catalogue540
Year of Publication
2014
Topic
Fire
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Costello, Reuben
Abu, Anthony
Moss, Peter
Buchanan, Andrew
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Fire
Mechanical Properties
Keywords
Box Beams
Post-Tensioned
Fire Performance
Shear Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper outlines a series of experimental tests of LVL box beams designed to fail in shear. Some beams utilised post-tensioning systems to increase the flexural strength and decrease deflection. Fire conditions were simulated using either an ISO 834 furnace test or by mechanically reducing the section dimensions on three-sides of the beam to replicate charring. Comparisons with a simplified calculation method for the fire performance of post-tensioned timber box beams are made and discussed. This paper gives special focus to the shear performance of LVL box beams because previous research had identified that the inclusion of post-tensioning may increase the likelihood of shear failure occurring in LVL box beams, especially in fire conditions.
Online Access
Free
Resource Link
Less detail