Skip header and navigation

2 records – page 1 of 1.

Bond Behavior of Glued-In Timber Joint with Deformed Bar Epoxied in Glulam

https://research.thinkwood.com/en/permalink/catalogue537
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Ling, Zhibin
Liu, Weiqing
Yang, Huifeng
Lu, Weidong
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Glued-in Rods
Bond behavior
Withdrawal Strength
Pull-Pull tests
Failure Modes
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper describes the test program of glued-in deformed bar timber joint conducted in pull-pull configuration, which aims to investigate the bond behavior of glued-in deformed bar systems in glulam. The varying parameter are bar slenderness ratio and glue-line thickness. In order to obtain the bond stress distribution along the anchorage length, special deformed bar with strain gauges attached internally were designed. Test results show that both the bar slenderness ratio and glue-line thickness have obvious influence on withdrawal strength and bond behavior of glued-in deformed bar joint. Failure modes of specimens are also analyzed in this paper. Ductile failure modes of glued-in rod timber joint could be realized with reasonable design.
Online Access
Free
Resource Link
Less detail

Prediction of Withdrawal Resistance for a Screw in Hybrid Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2687
Year of Publication
2020
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Pang, Sung-Jun
Ahn, Kyung-Sun
Kang, Seog Goo
Oh, Jung-Kwon
Publisher
SpringerOpen
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Withdrawal Resistance
Screw
Withdrawal Stiffness
Withdrawal Strength
Connections
Language
English
Research Status
Complete
Series
Journal of Wood Science
Summary
The aim of this study was to predict the withdrawal resistance of a screw in hybrid cross-laminated timber (CLT) composed of two types of lamina layers. A theoretical model to predict the withdrawal resistance was developed from the shear mechanism between a screw and the layers in hybrid CLT. The parameters for the developed model were the withdrawal stiffness and strength that occurs when a screw is withdrawn, and the penetration depth of a screw in layers of a wood material. The prediction model was validated with an experimental test. Screws with two different diameters and lengths (Ø6.5 × 65 mm and Ø8.0 × 100 mm) were inserted in a panel composed of solid wood and plywood layers, and the withdrawal resistances of the screws were evaluated. At least 30 specimens for each group were tested to derive the lower 5th percentile values. As a result, the developed model predictions were 86–88% of the lower 5th percentile values of hybrid CLT from the properties of the lamina layer. This shows that the withdrawal resistance of hybrid CLT can be designed from the properties of its layer.
Online Access
Free
Resource Link
Less detail