Skip header and navigation

7 records – page 1 of 1.

Basis of Design - Performance-Based Design and Structural CD Drawings for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1827
Year of Publication
2017
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
KPFF Consulting Engineers
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural
Wind Load
Sustainability
Reliability
Seismic
Earthquake Resistance
Serviceability
Design
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Notes
Document includes 100% CD construction drawings
Summary
This document outlines the basis of design for the performance-based design and nonlinear response history analysis of the Framework Project in Portland, OR. Performance-based design is pursued for this project because the proposed lateral force-resisting system, consisting of post-tensioned rocking cross-laminated timber (CLT) walls is not included in ASCE/SEI 7-10 Table 12.2-1.
Online Access
Free
Resource Link
Less detail

Cathedral Hill 2: Challenges in the Design of a Tall All-Timber Building

https://research.thinkwood.com/en/permalink/catalogue1660
Year of Publication
2016
Topic
Design and Systems
Seismic
Wind
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Below, Kevin
Sarti, Francesco
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Wind
Keywords
Pres-Lam
Dynamic Behaviour
Nonlinear Time History Analysis
Wind Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3633-3640
Summary
The paper presents the design and modelling of Cathedral Hill 2, a 15-storey timber building, planned for construction in Canada. The building is a 59-metre tall office-use construction with an all-timber structure where the lateral-load-resisting system consists of segmented Pres-Lam walls. The paper firstly presents the design philosophy, and the motivations for the use of the Pres-Lam system, which was mainly driven by serviceability limit-state wind loading. The final part of the paper shows the verification of the building’s dynamic behaviour using non-linear time-history analysis, showing that, although the lateral-load design is governed by serviceability limit-state wind deflections, earthquake demand must not be overlooked due to higher-mode amplifications.
Online Access
Free
Resource Link
Less detail

Enable the Use of Mass Timber Products for Non-Residential Buildings in High Velocity Hurricane Zone

https://research.thinkwood.com/en/permalink/catalogue2630
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Clemson University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Wind
Keywords
High Velocity Hurricane Zone
Wind Load
Debris Impact Testing
Non-Residential
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Weichiang Pang at Clemson University
Summary
The overall goal of this project is to enable the use of cross laminated timber (CLT) to construct commercial and other non-residential buildings in High Velocity Hurricane Zone (HVHZ). The 1992 Hurricane Andrew exposed the shortcomings of existing building codes. Recognizing this shortcomings, the Florida Building Code (FBC) incorporated new enhanced provisions which specifically require that the entire building envelope, including the wall and roof systems, must be impact resistant in HVHZ. Currently, CLT is not in the database of a list of building envelope products that comply with the HVHZ standard. The specific objectives of this project are (1) to qualify PRG-320 compliance CLT panels for HVHZ standard by conducting FBC debris impact and wind pressure cyclic tests; (2) to conduct education and outreach sessions to promote the use of CLT in HVHZ, and (3) to identify possible construction projects that may utilize CLT as the building envelope and promote the use of CLT in those projects. The test results generated in this project will be used specifically to gain HVHZ building code approval.
Less detail

On the Lateral Stability of Multi-Story Mass-Timber Buildings Subjected to Tornado-Like Wind Field

https://research.thinkwood.com/en/permalink/catalogue1972
Year of Publication
2018
Topic
Wind
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Risk-Based Wind Design of Tall Mass-Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1970
Year of Publication
2018
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Wind and Earthquake Design Framework for Tall Wood-Concrete Hybrid System

https://research.thinkwood.com/en/permalink/catalogue2143
Year of Publication
2019
Topic
Seismic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Tesfamariam, Solomon
Bezabeh, Matiyas
Skandalos, Konstantinos
Martinez, Edel
Dires, Selamawit
Bitsuamlak, Girma
Goda, Katsuichiro
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Wind
Keywords
Tall Wood
Seismic design factors
Wind tunnel test
Ductility Factors
Timber-reinforced concrete
Force Modification Factors
Probabilistic Model
Wind Load
Overstrength seismic force
Language
English
Research Status
Complete
Notes
DOI 10.14288/1.0380777
Summary
Advancement in engineered wood products altered the existing building height limitations and enhanced wooden structural members that are available on the market. These coupled with the need for a sustainable and green solution to address the ever-growing urbanization demand, avails wood as possible candidate for primary structural material in the construction industry. To this end, several researches carried out in the past decade to come up with sound structural solutions using a timber based structural system. Green and Karsh (2012) introduced the FFTT system; Tesfamariam et al. (2015) developed force-based design guideline for steel infilled with CLT shear walls, and SOM (2013) introduced the concrete jointed mass timber hybrid structural concepts. In this research, the basic structural concepts proposed by SOM (2013) is adopted. The objective of this research is to develop a wind and earthquake design guideline for concrete jointed tall mass timber buildings in scope from 10- to 40-storey office or residential buildings. The specific objective of this research is as follow: Wind serviceability design guideline for hybrid mass-timber structures. Calibration of design wind load factors for the serviceability wind design of hybrid tall mass timber structures. Guidelines to perform probabilistic modeling, reliability assessment, and wind load factor calibration. Overstrength related modification factor Ro and ductility related modification factor Rd for future implementation in the NBCC. Force-based design guideline following the capacity based design principles.
Online Access
Free
Resource Link
Less detail

Wind-Induced Dynamic Response of a 22-Storey Timber Building: Options for Structural Design of the Hallonbergen Project

https://research.thinkwood.com/en/permalink/catalogue64
Year of Publication
2015
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Tjernberg, Frida
Organization
KTH royal institute of technology
Year of Publication
2015
Country of Publication
Sweden
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Wind
Keywords
Residential
Tall Wood
Wind Load
High-Rise
Language
English
Research Status
Complete
Summary
Folkhem is a Swedish company exclusively building timber residential buildings in the Stockholm area. The company is currently in the planning stages of what would be the world’s tallest timber building, a 22-storey timber residential buiding in Hallonbergen, Sundbyberg. In this master thesis, this proposed building has been analyzed with regards to its wind-induced dynamic response. The work includes studies of stabilization of tall structures, case studies of existing buildings and developed systems for tall timber construction and analyzed options for structural design of the Hallonbergen project. Eleven different structural systems have been investigated with regards to their displacement at the top and their peak acceleration when subject to wind loading. The peak acceleration has been calculated using both Eurocode and ISO 4354. The values have been assessed against ISO 6897 and ISO 10137. The results indicate that it is possible to construct the Hallonbergen project without risk of unacceptable dynamic response, using any of the following options; The Martinson’s system with 259 mm CLT plates The Kauffmann system The structural system presented in “The Case for Tall Wood Buildings” The structural system presented in “The Timber Tower Research Project”
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.