Skip header and navigation

21 records – page 1 of 3.

The 200 m timber tower - A study on the possibilities of constructing a 200 meter tall timber building

https://research.thinkwood.com/en/permalink/catalogue3127
Year of Publication
2020
Topic
Wind
Application
Wood Building Systems
Author
Gyllensten, Sebastian
Modig, Axel
Organization
Chalmers University of Technology
Year of Publication
2020
Format
Thesis
Application
Wood Building Systems
Topic
Wind
Keywords
Aerodynamics
Tall Timber Structure
Wind Load
Acceleration
Research Status
Complete
Summary
As the interest in timber buildings is increasing, more attention is pointed towards highrise timber buildings. Partly because it is one of the main areas pushing the development within the field of timber structures. As the current tallest timber building, Mjöstornet in Brumunddal is approximately 10 times shorter than the world’s tallest building, Burj Khalifa, the intuition says that there is room for major improvements regarding tall timber structures. The aim of this thesis is therefore to investigate the possibilities to build a 200 m tall timber tower while still fulfilling the requirements for strength, stability and dynamics. In order to anchor the project in reality, the assumed building location is Gothenburg with the ground conditions of solid rock. Early in the study it was concluded that in order to push the height limits, the building design had to be improved compared to the existing timber buildings. The main geometries of interest turned out to be the circular shape thanks to its aerodynamical benefits. This base shape was applied in various ways, generating five different concepts ready for evaluation. Each of the five concepts were modelled and preliminary sized using Grasshopper and Karamba 3D, whereafter they were evaluated based on their dynamic performance, global stiffness, and a few other evaluation criteria. The evaluation was primary made with structural performance in mind and secondary with regard to comfort, quality and economical aspects. The results show that one of the concepts have great potential of reaching 200 m despite the uncertainties regarding joint stiffness and structural damping. Also, a few of the other concepts might be able to reach 200 m if subject to some structural and dynamical improvements.
Online Access
Free
Resource Link
Less detail

Basis of Design - Performance-Based Design and Structural CD Drawings for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1827
Year of Publication
2017
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
KPFF Consulting Engineers
Year of Publication
2017
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural
Wind Load
Sustainability
Reliability
Seismic
Earthquake Resistance
Serviceability
Design
Research Status
Complete
Series
Framework: An Urban + Rural Design
Notes
Document includes 100% CD construction drawings
Summary
This document outlines the basis of design for the performance-based design and nonlinear response history analysis of the Framework Project in Portland, OR. It is intended to be a living document that will be modified and revised as the project develops and in response to peer review comments. Performance-based design is pursued for this project because the proposed lateral force-resisting system, consisting of post-tensioned rocking cross-laminated timber (CLT) walls is not included in ASCE/SEI 7-10 Table 12.2-1. Lateral force-resisting systems included in ASCE/SEI 7-10 Table 12.2-1 may be designed for earthquake effects using the prescriptive provisions in ASCE/SEI 7- 10. Lateral force-resisting systems not included are still permitted but must be demonstrated to have performance not less than that expected for included systems. This option is available via the performance-based procedures of ASCE/SEI 7-10 Section 1.3.1.3. Note that lateral forceresisting systems for wind effects are not restricted in ASCE/SEI 7-10. Therefore, design for wind effects will still be approached within the performance-based design framework but in a more state-of-the-practice manner.
Online Access
Free
Resource Link
Less detail

Cathedral Hill 2: Challenges in the Design of a Tall All-Timber Building

https://research.thinkwood.com/en/permalink/catalogue1660
Year of Publication
2016
Topic
Design and Systems
Seismic
Wind
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Below, Kevin
Sarti, Francesco
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Wind
Keywords
Pres-Lam
Dynamic Behaviour
Nonlinear Time History Analysis
Wind Loading
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3633-3640
Summary
The paper presents the design and modelling of Cathedral Hill 2, a 15-storey timber building, planned for construction in Canada. The building is a 59-metre tall office-use construction with an all-timber structure where the lateral-load-resisting system consists of segmented Pres-Lam walls. The paper firstly presents the design philosophy, and the motivations for the use of the Pres-Lam system, which was mainly driven by serviceability limit-state wind loading. The final part of the paper shows the verification of the building’s dynamic behaviour using non-linear time-history analysis, showing that, although the lateral-load design is governed by serviceability limit-state wind deflections, earthquake demand must not be overlooked due to higher-mode amplifications.
Online Access
Free
Resource Link
Less detail

Dynamic Response in Tall Timber Structures

https://research.thinkwood.com/en/permalink/catalogue3098
Year of Publication
2018
Topic
Acoustics and Vibration
Application
Wood Building Systems
Author
Fredrik, Ivarsson
Joel, Sjöholm
Organization
Chalmers University of Technology
Year of Publication
2018
Format
Thesis
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Multi Storey Structure
Wind Load
Acceleration
Research Status
Complete
Summary
Modern building tend to strive towards more slender and lightweight constructions. That is to be more provident with space and materials as well as for aesthetic reasons. The effect of these lightweight slender buildings is an increased sensitivity to lateral loads with regard to the dynamic behaviour of the structure. Since the european union changed to more function based standards, the development of timber and timber products have increased during the past 20 years. It is now both in the interest of and feasible to build taller and larger buildings with the primary load bearing system made of timber. Timber have a relatively low mass compared to other construction materials which can result in larger deformations and discomfort if the dynamic response in the structure is too large. The purpose of this report is to make a parametric study on how mass, stiffness and damping affect the feasible building height of a tall timber structure with regard to dynamic effects caused by wind. This is performed via simulations and analyses of a planned timber structure above 10 floors. The general design parameters are modified in order to fulfill the acceleration requirements for a structure with an increasing number of floors. The initial structure is composed of load bearing Cross Laminated Timber (CLT) walls and floors that acts in diaphragm action. A FE-model is used to determine the eigenfrequencies of the structure and the swedish Annex, EKS 10, is used to calculate the peak acceleration. The determined eigenfrequency and acceleration curve is compared with the requirements of horizontal acceleration according to ISO 10137. If the structure fulfills the requirements, the structure is successively increased with 2 storeys at the time. If the structure does not fulfill the demands, it is improved with mass, stiffness and/or damping in an iteration process until it fulfills the requirements. The result of this study is divided into a "general behaviour" and a "structural behaviour" chapter, to make it possible to understand the impact of each individual parameter separately and the combined impact on the structure. The improvements of adding mass and stiffness separately did not result in dramatic improvements of the acceleration. But by combining mass, damping and stiffness, considerable improvements with respect to the dynamic response is achieved and a building height of 26 storeys was feasible. Improvements of mass and damping combined made it possible to fulfill the demands on a 22 storey timber structure. This study conclude that the most feasible solution is to add mass and damping in forms of a concrete top storey (floor and walls) together with a TMD (Tuned Mass Damper) on the top floor.
Online Access
Free
Resource Link
Less detail

Dynamic Response of Tall Timber Buildings Under Service Load - The DynaTTB Research Program

https://research.thinkwood.com/en/permalink/catalogue3015
Year of Publication
2020
Topic
Acoustics and Vibration
Application
Wood Building Systems
Author
Abrahamsen, Rune
Bjertnæs, Magne
Bouillot, Jacques
Brank, Bostjan
Cabaton, Lionel
Crocetti, Roberto
Flamand, Olivier
Garains, Fabien
Gavric, Igor
Germain, Olivier
Hahusseau, Ludwig
Hameury, Stephane
Johansson, Marie
Johansson, Thomas
Ao, Wai Kei
Kurent, Blaž
Landel, Pierre
Linderholt, Andreas
Malo, Kjell
Manthey, Manuel
Nåvik, Petter
Pavic, Alex
Perez, Fernando
Rönnquist, Anders
Stamatopoulos, Haris
Sustersic, Iztok
Tulebekova, Saule
Organization
Norwegian University of Science and Technology
University of Exeter
University of Ljubljana
Linnaeus University
Year of Publication
2020
Format
Conference Paper
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Timber Building
Wind Load
Discomfort
Modelling
Damping
Full Scale
Conference
International Conference on Structural Dynamics
Research Status
Complete
Summary
Wind-induced dynamic excitation is becoming a governing design action determining size and shape of modern Tall Timber Buildings (TTBs). The wind actions generate dynamic loading, causing discomfort or annoyance for occupants due to the perceived horizontal sway – i.e. vibration serviceability failure. Although some TTBs have been instrumented and measured to estimate their key dynamic properties (natural frequencies and damping), no systematic evaluation of dynamic performance pertinent to wind loading has been performed for the new and evolving construction technology used in TTBs. The DynaTTB project, funded by the Forest Value research program, mixes on site measurements on existing buildings excited by heavy shakers, for identification of the structural system, with laboratory identification of building elements mechanical features coupled with numerical modelling of timber structures. The goal is to identify and quantify the causes of vibration energy dissipation in modern TTBs and provide key elements to FE modelers. The first building, from a list of 8, was modelled and tested at full scale in December 2019. Some results are presented in this paper. Four other buildings will be modelled and tested in spring 2021.
Online Access
Free
Resource Link
Less detail

Enable the Use of Mass Timber Products for Non-Residential Buildings in High Velocity Hurricane Zone

https://research.thinkwood.com/en/permalink/catalogue2630
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Clemson University
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Wind
Keywords
High Velocity Hurricane Zone
Wind Load
Debris Impact Testing
Non-Residential
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Weichiang Pang at Clemson University
Summary
The overall goal of this project is to enable the use of cross laminated timber (CLT) to construct commercial and other non-residential buildings in High Velocity Hurricane Zone (HVHZ). The 1992 Hurricane Andrew exposed the shortcomings of existing building codes. Recognizing this shortcomings, the Florida Building Code (FBC) incorporated new enhanced provisions which specifically require that the entire building envelope, including the wall and roof systems, must be impact resistant in HVHZ. Currently, CLT is not in the database of a list of building envelope products that comply with the HVHZ standard. The specific objectives of this project are (1) to qualify PRG-320 compliance CLT panels for HVHZ standard by conducting FBC debris impact and wind pressure cyclic tests; (2) to conduct education and outreach sessions to promote the use of CLT in HVHZ, and (3) to identify possible construction projects that may utilize CLT as the building envelope and promote the use of CLT in those projects. The test results generated in this project will be used specifically to gain HVHZ building code approval.
Less detail

Haut - A 21-storey Tall Timber Residential Building

https://research.thinkwood.com/en/permalink/catalogue2743
Year of Publication
2020
Topic
Design and Systems
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Hybrid Building Systems
Author
Verhaegh, Rob
Vola, Mathew
de Jong, Jorn
Publisher
KoreaScience
Year of Publication
2020
Format
Journal Article
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Hybrid Building Systems
Topic
Design and Systems
Keywords
Tall Timber Buildings
Residential
Netherlands
TCC
Vibration
Holistic Design
Multi-Family
Wind
Stability
High-Rise
Haut
Research Status
Complete
Series
International Journal of High-Rise Buildings
Summary
This paper reflects on the structural design of Haut; a 21-storey high-end residential development in Amsterdam, the Netherlands. Construction started in 2019 and is in progress at the time of writing. Upon completion in 2021, Haut will be the first residential building in the Netherlands to achieve a 'BREEAM-outstanding' classification. The building will reach a height of 73 m, making it the highest timber structure in the Netherlands. It contains some 14.500 of predominantly residential functions. It features a hybrid concrete-timber stability system and concrete-timber floor panels. This paper describes the concepts behind the structural design for Haut and will touch upon the main challenges that have arisen from the specific combination of characteristics of the project. The paper describes the design of the stability system and -floor system, the analysis of differential movements between concrete and timber structures and wind vibrations. The paper aims to show how the design team has met these specific challenges by implementing a holistic design approach and integrating market knowledge at an early stage of the design.
Online Access
Free
Resource Link
Less detail

Innovative Technology for Mass Timber and Hybrid Modular Buildings

https://research.thinkwood.com/en/permalink/catalogue2801
Topic
Design and Systems
Seismic
Wind
Connections
Application
Wood Building Systems
Hybrid Building Systems
Organization
Oregon State University
Application
Wood Building Systems
Hybrid Building Systems
Topic
Design and Systems
Seismic
Wind
Connections
Keywords
Mass Timber
Modular Construction
Ductility
Overstrength
High-Rise
Tall Wood Buildings
Interdisciplinary Research
Wind Tunnel Test
Research Status
In Progress
Notes
Project contact is Erica Fischer at Oregon State University
Summary
This Faculty Early Career Development (CAREER) award will create innovative building technology that will enable mass timber modular construction as a building solution to many of the issues the nation's major cities face today. The architecture, engineering, and construction (AEC) sector is on the cusp of a significant disruption that will change the way buildings are manufactured, assembled, and designed, the catalyst of which is the integration of building information models (BIM) and automated construction and manufacturing. This disruption will significantly impact structural engineers. With the streamlining of building manufacturing, assembling, and design, engineers will need to take advantage of three opportunities: (1) design for constructability, (2) design for manufacturing, and (3) design for the whole life of the building (considering future modifications, maintenance, and easily replacing parts of the building). Modular construction, as one method to take advantage of these three opportunities, can address labor and housing shortages that exist in almost every U.S. city today and also can provide rapid construction methods for post-disaster reconstruction and additional patient care facilities. This research will contribute to the state of Oregon’s economy, which has made significant investments in mass timber production, manufacturing, and research. This research will be complemented through the development of best practices for using interdisciplinary, collaborative classroom environments to enhance engineering identities of underrepresented minorities and women at the graduate level. This award will support the National Science Foundation (NSF) role in the National Earthquake Hazards Reduction Program and the National Windstorm Impact Reduction Program. The specific goal of this research is to develop a novel framework for robust and ductile mass timber modular construction that can be applied to buildings with varying lateral force resisting systems. Through this framework, the relationship between the rigidity of modular interconnections and overall structural behavior will be investigated. The research objectives of this project are to: (1) quantify the demands in interconnections that provide ductility when the building framing is subjected to combined gravity and lateral forces (seismic and wind); (2) quantify the impact of interconnection configuration and design on the ability of interconnections to meet the strength and serviceability performance criteria for mass timber high-rise modular buildings; (3) quantify ductility and overstrength for mass timber modular construction and explore applicability of conventional seismic performance factors and how these factors influence the adjusted collapse margin ratio for archetype buildings; (4) explore the influence of interconnection stiffness on the behavior of high-rise modular mass timber buildings subjected to wind demands; and (5) explore the relationship between team-focused and interdisciplinary educational practices with engineering identity and knowledge retention. New connection technology will be created and its contribution to the overall building behavior will be investigated through a rigorous testing plan and complex physics-based numerical simulations of archetype buildings subjected to combined gravity and lateral loads (seismic and wind). This research is a critical first step to develop innovative technology that will change how buildings are designed, manufactured, and assembled. This project will enable the Principal Investigator to establish interdisciplinary research, teaching, and mentorship in the area of mass timber and hybrid construction. This research will use the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI) Boundary Layer Wind Tunnel facility at the University of Florida. Experimental datasets will be archived in the NHERI Data Depot (https://www.DesignSafe-ci.org) and made publicly available.
Resource Link
Less detail

Lateral stiffening systems for tall timber buildings – tube-in-tube systems

https://research.thinkwood.com/en/permalink/catalogue3268
Year of Publication
2022
Topic
Mechanical Properties
Application
Wood Building Systems
Author
Binck, Charles
Sixie, Alex
Frangi, Andrea
Organization
ETH Zurich
Publisher
Taylor&Francis Online
Year of Publication
2022
Format
Journal Article
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Tall Timber Buildings
Tube-in-tube Systems
Wind-induced Vibrations
Moment-resisting Joints
Serviceability Limit State
Research Status
Complete
Series
Wood Material Science & Engineering
Summary
In this paper, an adaptable and architecturally flexible lateral stiffening system for tall timber buildings between 50 and 147 m is developed and investigated. The system is based on a tube-in-tube concept. The internal tube consists of a braced timber core, and the external tube consists of a frame structure with semi-rigid beam-column joints in the façade. Based on a finite element framework, more than 500 000 simulations with different configurations are carried out to assess the performance of the lateral stiffening system subjected to wind loading. The resulting data is used to assess the feasibility of the tube-in-tube system and stiffness requirements for the beam-column joints.
Online Access
Free
Resource Link
Less detail

Numerical Analysis on Global Serviceability Behaviours of Tall CLT Buildings to the Eurocodes and UK National Annexes

https://research.thinkwood.com/en/permalink/catalogue2878
Year of Publication
2021
Topic
Serviceability
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhao, Xuan
Zhang, Binsheng
Kilpatrick, Tony
Sanderson, Iain
Organization
Glasgow Caledonian University
Editor
Tannert, Thomas
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Wind
Keywords
Tall Timber Buildings
Wind Load
Horizontal Displacement
Vibration Response
Peak Acceleration
Research Status
Complete
Series
Buildings
Summary
Cross-laminated timber (CLT) is an innovative engineered timber product and has been widely used for constructing tall timber buildings due to its excellent structural performance and good strength with its multi-layers of boards in both perpendicular directions. However, the global serviceability performance of tall timber buildings constructed from CLT products for the lift core, walls, and floors under wind load is not well known yet, even though it is crucial in a design. In this study, the finite element software SAP2000 is used to numerically simulate the global static and dynamic serviceability behaviours of a 30-storey tall CLT building assumed in Glasgow, Scotland, UK. The maximum horizontal storey displacement due to wind is only 16.6% of the design limit and the maximum global horizontal displacement is only 13.8% of the limit set to the Eurocodes. The first three lowest vibrational frequencies, modes and shapes were obtained, with the fundamental frequency being 19.9% larger than the code-recommended value. Accordingly, the peak acceleration of the building due to wind was determined as per the Eurocodes and ISO standard. The results show that the global serviceability behaviours of the building satisfy the requirements of the Eurocodes and other design standards. Parametric studies on the peak accelerations of the tall CLT building were also conducted by varying the timber material properties and building masses. By increasing the timber grade for CLT members, the generalised building mass and the generalised building stiffness can all be adopted to lower the peak accelerations at the top level of the building, so as to reduce human perceptions of the wind-induced vibrations with respect to the peak acceleration.
Online Access
Free
Resource Link
Less detail

21 records – page 1 of 3.