Skip header and navigation

3 records – page 1 of 1.

Cross-Laminated Timber Fasteners Solutions for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2197
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Shear Walls
Walls
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Floors
Shear Walls
Walls
Topic
Seismic
Connections
Keywords
Wall-to-Floor
Wall-to-Wall
Wall-to-Foundation
Strength Properties
Screw Connectors
Research Status
In Progress
Notes
Project contact is Arijit Sinha at Oregon State University
Summary
Constructing buildings with CLT requires development of novel panel attachment methods and mechanisms. Architects and engineers need to know the engineering strength properties of connected panels, especially in an earthquake prone area. This project will improve knowledge of three types of wall panel connections: wall-to-floor, wall-to-wall, and wall-to-foundation. Testing will determine the strength properties of metal connectors applied with diffferent types and sizes of screw fasteners. The data will be used to develop a modeling tool that engineers can use when designing multi-story buildings to be constructed with CLT panels.
Less detail

Mechanical Experimental Study on Tensile Bolted Connections of Crosslaminated Timber

https://research.thinkwood.com/en/permalink/catalogue2450
Year of Publication
2020
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Su, Chenxiao
Xiong, Haibei
Publisher
Tech Science Press
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Connections
Mechanical Properties
Keywords
Monotonic Loading
Cyclic Loading
Deformation
Failure Modes
Wall-to-Wall
Wall-to-Floor
Bolted Connection
Load-Slip
Bearing Capacity
Yielding Point
Stiffness
Ductility
Language
English
Research Status
Complete
Series
Structural Durability & Health Monitoring
Online Access
Free
Resource Link
Less detail

Verification of Seismic Resistant Performance of Developed Original Cross-Laminated Timber Core Structure Method by Shaking Table Experiment

https://research.thinkwood.com/en/permalink/catalogue2699
Year of Publication
2020
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gunawan, Indra
Moritani, K
Isoda, Hiroshi
Mori, Takuro
Shinohara, M
Noda, T
Hosomi, R
Kurumada, Shinsuke
Makita, T
Publisher
IOP Publishing Ltd
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Core Structure
Shaking Table
Joint
Wall-to-Foundation
Wall-to-Wall
Earthquake
Shear Force
Research Status
Complete
Series
IOP Conference Series: Materials Science and Engineering
Summary
In recent years, development of wood engineering is gradually increasing. Instead of using many wood columns, cross laminated timber is expected for constructing spacious open space building. Since cross-laminated timber has high rigidity and strength, cross-laminated timber is expected to be used as earthquake resistant wall or floor diaphragm that makes the span of building can be increased and the position of the wall can be adjusted openly. In order to optimize the performance of cross-laminated timber for open space building, original cross laminated timber core structure method was developed. In this paper, the development concept of original cross laminated timber core structure method will be explained. In this method, the joint connection for each element such as joint connection for wall-concrete foundation, wall-beam, and wall to hanging wall was also developed. The experiment to verify the strength and rigidity of each connection has been conducted and the result will be described. The shaking table experiment of 3-story open space building constructed by original cross laminated timber structure using varies earthquake waves was conducted. In this experiment natural period, shear force for each floor, story drift, and building response data is taken. The result shows the structure designed by original CLT core structure method is satisfy the requirement based on Japan cross-laminated panel structure regulation.
Online Access
Free
Resource Link
Less detail