Skip header and navigation

2 records – page 1 of 1.

Hysteretic Behaviour of Metal Connectors for Hybrid (High- and Low-Grade Mixed Species) Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1659
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Mahdavifar, Vahid
Barbosa, André
Sinha, Arijit
Muszynski, Lech
Gupta, Rakesh
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Mechanical Properties
Connections
Keywords
Cyclic Loading
Wall-to-Floor
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3591-3598
Summary
Cross-laminated timber (CLT) is a prefabricated solid engineered wood product made of at least three orthogonally bonded layers of solid-sawn lumber that are laminated by gluing longitudinal and transverse layers with structural adhesives to form a solid panel. Previous studies have shown that the CLT buildings can perform well in seismic loading and are recognized as the essential role of connector performance in structural design, modelling, and analysis of CLT buildings. When CLT is composed of high-grade/high-density layers for the outer lamellas and low-grade/lowdensity for the core of the panels, the CLT panels are herein designated as hybrid CLT panels as opposed to conventional CLT panels that are built using one lumber type for both outer and core lamellas. This paper presents results of a testing program developed to estimate the cyclic performance of CLT connectors applied on hybrid CLT layups. Two connectors are selected, which can be used in wall-to-floor connections. These are readily available in the North American market. Characterization of the performance of connectors is done in two perpendicular directions under a modified CUREE cyclic loading protocol. Depending on the mode of failure, in some cases, testing results indicate that when the nails or screws penetrate the low-grade/low-density core lumber, a statistically significant difference is obtained between hybrid and conventional layups. However, in other cases, due to damage in the face layer or in the connection, force-displacement results for conventional and hybrid CLT layups were not statistically significant.
Online Access
Free
Resource Link
Less detail

Structural Redundancy in Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1785
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Lukacs, Ildiko
Björnfot, Anders
Tsalkatidis, Themistoklis
Tomasi, Roberto
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Wall-to-Floor
Stiffness
Finite Element Model
Horizontal Loads
Vertical Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5811-5818
Summary
In high timber structures, cross-laminated timber panels are common structural elements. The wall and floor panels are typically connected with steel plates, angle brackets, hold-downs, and screws. Based on analytical research, it seems that panel-to-panel connections give additional stiffness due to structural redundancies resulting from...
Online Access
Free
Resource Link
Less detail