Skip header and navigation

4 records – page 1 of 1.

Compression Perpendicular to Grain Behavior for the Design of a Prefabricated CLT Facade Horizontal Joint

https://research.thinkwood.com/en/permalink/catalogue1540
Year of Publication
2016
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Author
Gasparri, Eugenia
Lam, Frank
Liu, Yingyang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Connections
Design and Systems
Keywords
Envelope
Joints
Self-Tapping Screws
Finite Element Analysis
Prefabricated
Vertical Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1088-1098
Summary
The present work aims to define horizontal joint dimension tolerances for newly proposed prefabricated façade systems for applications in tall cross laminated timber (CLT) buildings based on the compression perpendicular to grain characteristics of the component. This requires a thorough understanding of structural settlement under vertical loads which can vary at each floor height. An experimental program has been carried out with reference to the case of a platform frame building construction, where major perpendicular to grain compression of the floor can occur under high loads. Five-layer CLT specimens have been tested under compression via the application of a line load with steel plate as well as actual CLT wall specimens. Strengthening contribution using full threaded self-tapping wood screws has also been investigated. Results of deformation characteristics have been validated through a non-linear finite element analysis and further elaborated in order to outline implications in the design of a prefabricated façade.
Online Access
Free
Resource Link
Less detail

Design of Post-Tensioned Timber Beams for Fire Resistance

https://research.thinkwood.com/en/permalink/catalogue4
Year of Publication
2012
Topic
Design and Systems
Fire
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Buchanan, Andrew
Abu, Anthony
Carradine, David
Moss, Peter
Spellman, Phillip
Year of Publication
2012
Country of Publication
Switzerland
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Design and Systems
Fire
Keywords
Full Scale
Furnace Tests
Post-Tensioned
Box Beams
Vertical Loads
Failure
Language
English
Conference
International Conference on Structures in Fire
Research Status
Complete
Notes
June 6-8, 2012, Zurich, Switzerland
Summary
This paper describes a series of three full-scale furnace tests on post-tensioned LVL box beams loaded with vertical loads, and presents a proposed fire design method for post-tensioned timber members. The design method is adapted from the calculation methods given in Eurocode 5 and NZS:3603 which includes the effects of changing geometry and several failure mechanisms specific to posttensioned timber. The design procedures include an estimation of the heating of the tendons within the timber cavities, and relaxation of post-tensioning forces. Additionally, comparisons of the designs and assumptions used in the proposed fire design method and the results of the full-scale furnace tests are made. The experimental investigation and development of a design method have shown several areas which need to be addressed. It is important to calculate shear stresses in the timber section, as shear is much more likely to govern compared to solid timber. The investigation has shown that whilst tensile failures are less likely to govern the fire design of post-tensioned timber members, due to the axial compression of the post-tensioning, tensile stresses must still be calculated due to the changing centroid of the members as the fire progresses. Research has also highlighted the importance of monitoring additional deflections and moments caused by the high level of axial loads.
Online Access
Free
Resource Link
Less detail

Highly Energy Dissipative and Ductile Timber-Glass Hybrid Element

https://research.thinkwood.com/en/permalink/catalogue1744
Year of Publication
2016
Topic
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Timber-Glass Composite
Application
Hybrid Building Systems
Author
Rajcic, Vlatka
Žarnic, Roko
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Glass Composite
Application
Hybrid Building Systems
Topic
Mechanical Properties
Seismic
Keywords
Glued-In Rods
Ductility
Energy Dissipation
Vertical Loads
Cyclic Loads
Horizontal Loads
Racking Test
Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4930-4937
Summary
CLT frames infilled with load-bearing glass sheets represent an innovative, hybrid structural element that can serve as load-bearing panel carrying load in both vertical and lateral direction. It can be used as a part of the prefabricated timber house or as a strengthening structural element in an existing timber building or the supporting...
Online Access
Free
Resource Link
Less detail

Structural Redundancy in Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1785
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Lukacs, Ildiko
Björnfot, Anders
Tsalkatidis, Themistoklis
Tomasi, Roberto
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Wall-to-Floor
Stiffness
Finite Element Model
Horizontal Loads
Vertical Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5811-5818
Summary
In high timber structures, cross-laminated timber panels are common structural elements. The wall and floor panels are typically connected with steel plates, angle brackets, hold-downs, and screws. Based on analytical research, it seems that panel-to-panel connections give additional stiffness due to structural redundancies resulting from...
Online Access
Free
Resource Link
Less detail