Skip header and navigation

3 records – page 1 of 1.

Highly Mechanical Performance of Laminated Veneer Lumber Induced by High Voltage Electrostatic Field

https://research.thinkwood.com/en/permalink/catalogue2148
Year of Publication
2019
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)

Influence of Micro Structured Surface on the Bond Quality of Hardwood

https://research.thinkwood.com/en/permalink/catalogue454
Year of Publication
2014
Topic
Connections
Cost
Material
Glulam (Glue-Laminated Timber)
Author
Lehmann, Martin
Volkmer, Thomas
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Cost
Keywords
Beech
Delamination
Hardwood
Melamine Urea Formaldehyde
Production Costs
Micro-structure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The state of the art requires a closed waiting time of about one hour for the beech glulam production. This has a negative influence on the production costs. Micro structured surfaces showed good performance in combination with coatings. The authors have performed tension-shear and delaminating test in order to investigate the influence of micro structured surfaces on the bond quality of hardwoods. The results are very promising and show clearly improved delaminating resistance for all tested adhesive. No closed waiting time was needed to achieve satisfying results using MUF in combination with beech.
Online Access
Free
Resource Link
Less detail

Investigation of Gluelines Block Shear Strength of Norway Spruce Glulam Joints in a Cold Climate

https://research.thinkwood.com/en/permalink/catalogue526
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Wang, Alice
Björnberg, Jonatan
Hagman, Olle
Ahmed, Sheikh
Wan, Hui
Niemz, Peter
Publisher
North Carolina State University
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Melamine Urea Formaldehyde
Phenol-Resorcinol Formaldehyde
Adhesives
Block Shear Strength
Temperature
Climate
Melamine Formaldehyde
Language
English
Research Status
Complete
Series
BioResources
Summary
Cross laminated timber (CLT) has been developed to a worldwide well-known and versatile useable building material. Currently increasing rates in production volume and distribution can be observed. In fact CLT, thanks to its laminar structure making it well suited for use in construction, provides new horizons in timber engineering, in areas which had until now been the realm of mineral building materials like concrete and masonry. After a short introduction, this paper aims to demonstrate current production processes used for rigid CLT. In section 2 the process steps are described and essential requirements, as well as pros and cons of various production techniques, are discussed. Latest results of R & D and of development and innovation in production technology are presented. In section 3 test and monitoring procedures in the area of the internal quality assurance, known as factory production control (FPC), are presented. Diverse regulations, in the form of technical approvals for CLT as well as in the CLT product standard prEN 16351 [1], are discussed. Additionally, some technological aspects of the product, CLT, together with a comparison of geometrical and production relevant parameters of current technical approvals in Europe are provided in section 4. In the final and main part of the paper, production and technology is presented in a condensed way. The outlook for current and future developments, as well as the ongoing establishment of the solid construction technique with CLT, is given. The product, CLT, comprises an enormous potential for timber engineering as well as for society as a whole. Standardisation and further innovation in production, prefabrication, joining technique, building physics and building construction make it possible for timber engineering to achieve worldwide success.
Online Access
Free
Resource Link
Less detail