Skip header and navigation

7 records – page 1 of 1.

Displacement Design Procedure for Cross Laminated Timber (CLT) Rocking Walls with Sacrificial Dampers

https://research.thinkwood.com/en/permalink/catalogue395
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gu, Mengzhe
Pang, Weichiang
Schiff, Scott
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Energy Dissipation
Ductile Behavior
U-Shaped Flexural Plates
Self-centering Mechanism
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
This paper presents the preliminary design of a rocking Cross-laminated Timber (CLT) wall using a displacement-based design procedure. The CLT wall was designed to meet three performance expectations: immediate occupancy (IO), life safety (LS), and collapse prevention (CP). Each performance expectation is defined in terms of an inter-story drift limit with a predefined non-exceedance probability at a given hazard level. U-shape flexural plates were used to connect the vertical joint between the CLT panels to obtain a ductile behavior and adequate energy dissipation during seismic motion. A design method for ensuring self-centering mechanism is also presented.
Online Access
Payment Required
Resource Link
Less detail

Experimental Investigation of Self-Centering Cross Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue1654
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Ganey, Ryan
Berman, Jeffrey
Yao, Lihong
Dolan, Daniel
Akbas, Tugce
Loftus, Sara
Sause, Richard
Ricles, James
Pei, Shiling
van de Lindt, John
Blomgren, Hans-Erik
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Mechanical Properties
Keywords
Lateral Load Resisting System
Post-Tensioning
U-Shaped Flexural Plates
Limit States
Self-Centering
Strength
Stiffness
Interstory Drifts
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3547-3554
Summary
This paper describes experiments conducted to develop a resilient lateral force resisting wall system that combines cross-laminated timber (CLT) panels with vertical post-tensioning (PT) to provide post-event re-centering. Supplemental mild steel U-shaped flexural plate devices (UFPs) are intended to yield under cyclic loading while the PT and CLT components remain undamaged until large inter-story drifts are experienced by the wall. The experiments were designed to explore various limit states for self-centering CLT (SC-CLT) walls, including their dependence on design variables and their impact on performance, and to investigate strength and stiffness degradation at large interstory drifts. It was found that the SC-CLT walls were able to re-center even after large drift cycles and the crushing of the CLT material was the governing limit sate for most specimens. A hierarchy of desirable limit states was identified consisting of UFP yielding, CLT splitting, PT yielding, and CLT crushing.
Online Access
Free
Resource Link
Less detail

Performance and Design of LVL Walls Coupled with UFP Dissipaters

https://research.thinkwood.com/en/permalink/catalogue195
Year of Publication
2014
Topic
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Shear Walls
Author
Iqbal, Asif
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Publisher
Taylor&Francis Online
Year of Publication
2014
Country of Publication
United Kingdom
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Shear Walls
Topic
Seismic
Keywords
Cyclic
Energy Dissipation
Multi-Storey
Post-Tensioned
U-Shaped Flexural Plates
Quasi-Static
Pseudo-dynamic
Language
English
Research Status
Complete
Series
Journal of Earthquake Engineering
Notes
http://dx.doi.org/10.1080/13632469.2014.987406
Summary
This article presents recent research on the seismic resistance of coupled post-tensioned timber walls for use in multi-story buildings. The walls are constructed from laminated veneer lumber (LVL), post-tensioned with unbonded vertical tendons, and coupled together with mild steel U-shaped flexural plates (UFPs) as energy dissipating elements. The timber wall design follows the same principles as used for post-tensioned precast concrete wall systems, using U-shaped plates to obtain a “hybrid” system, where energy is dissipated through yielding of the plates, while the vertical post-tensioning provides the restoring force. In this project, the same principles are applied to timber coupled walls. A series of quasi-static cyclic and pseudo-dynamic tests have been carried out to verify the applicability of the concept and the feasibility of the construction technology in timber buildings. The U-shaped plates showed stable energy dissipation characteristics and, in combination with the post-tensioning, desirable re-centering hysteretic behavior typically referred to as “flag-shape”. Because of the simplicity of these elements and the low cost of implementation, they have good prospects for practical application.
Online Access
Free
Resource Link
Less detail

Quasi Static Cyclic Tests of 2/3 Scale Post-Tensioned Timber Wall and Column-Wall-Column (CWC) Systems

https://research.thinkwood.com/en/permalink/catalogue648
Year of Publication
2014
Topic
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Author
Sarti, Francesco
Palermo, Alessandro
Pampanin, Stefano
Year of Publication
2014
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Topic
Seismic
Keywords
Post-Tensioned
Quasi-Static Testing
Column-Wall-Column
Steel
U-Shaped Flexural Plates
Displacement
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
March 21-23, 2014, Auckland, New Zealand
Summary
The paper presents the design and construction detailing of the quasi-static testing of two post-tensioned timber wall systems: a single (more traditional) wall system and a new configuration comprising of a column-wall-column coupled system (CWC). The latter allows avoiding displacement incompatibilities issues between the wall and the diaphragm by using the boundary columns as supports. Different reinforcement configurations were taken into account for both the wall systems; the walls were subjected to different initial post-tensioning stress levels, and different dissipater options were considered: both internal and external replaceable mild steel tension-compression yield fuses, and U-shape Flexural Plates (UFPs) were used for the single wall and the CWC solutions respectively. The experimental results showed the high-performance of both post-tensioned timber wall systems with negligible level of structural damage in the wall element and residual displacements and high level of dissipation.
Online Access
Free
Resource Link
Less detail

Seismic Design and Testing of Rocking Cross Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue202
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Ganey, Ryan
Organization
University of Washington
Year of Publication
2015
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Post-Tensioned
U-Shaped Flexural Plates
Energy Dissipation
Quasi-Static
Reverse Cyclic Load
Tall Wood
Language
English
Research Status
Complete
Summary
Seismically resilient, lateral systems for tall timber buildings can be created by combining cross laminated timber (CLT) panels with post-tensioned (PT) self-centering technology. The concept features a system of stacked CLT walls where particular stories are equipped to rock against the above and below floor diaphragms through PT connections and are supplemented with mild steel U-shaped flexural plate energy dissipation devices (UFPs). Experiments were conducted to better understand rocking CLT wall behavior and seismic performance. The testing program consisted of five single wall tests with varying PT areas, initial tensioning force, CLT panel composition, and rocking surface and one coupled wall test with UFPs as the coupling devices. The walls were tested with a quasi-static reverse-cyclic load protocol. The experimental results showed a ductile response and good energy dissipation qualities. To evaluate the feasibility and performance of the rocking CLT wall system, prototype designs were developed for 8 to 14 story buildings in Seattle using a performance-based seismic design procedure. Performance was assessed using numerical simulations performed in OpenSees for ground motions representing a range of seismic hazards. The results were used to validate the performance-based seismic design procedure for tall timber buildings with rocking CLT walls.
Online Access
Free
Resource Link
Less detail

Seismic Design of Core-Walls for Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue134
Year of Publication
2013
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Author
Dunbar, Andrew
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Year of Publication
2013
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Topic
Design and Systems
Seismic
Keywords
Multi-Storey
Prefabrication
Pres-Lam
Residential
Quasi-Static Loading
Energy Dissipation
U-Shaped Flexural Plates
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 26-28, 2013, Wellington, New Zealand
Summary
This paper describes options for seismic design of pre-fabricated timber core-wall systems, used as stairwells and lift shafts for lateral load resistance in multi-storey timber buildings. The use of Cross-Laminated Timber (CLT) panels for multi-storey timber buildings is gaining popularity throughout the world, especially for residential construction. This paper describes the possible use of CLT core-walls for seismic resistance in open-plan commercial office buildings in New Zealand. Previous experimental testing at the University of Canterbury has been done on the in-plane behaviour of single and coupled Pres-Lam post-tensioned timber walls. However there has been very little research done on the behaviour of timber walls that are orthogonal to each other and no research into CLT walls in the post-tensioned Pres-Lam system. This paper describes the proposed test regime and design detailing of two half-scale twostorey CLT stairwells to be tested under a bi-directional quasi-static loading. The test specimens will include a half-flight stair case with landings within the stairwell. The “High seismic option” consists of post-tensioned CLT walls coupled with energy dissipating U-shaped Flexural Plates (UFP) attached between wall panels and square hollow section steel columns at the corner junctions. An alternative “Low seismic option” uses the same post-tensioned CLT panels, with no corner columns or UFPs. The panels will be connected by screws to provide a semi-rigid connection, allowing relative movement between the panels producing some level of energy dissipation.
Online Access
Free
Resource Link
Less detail

Seismic Design of Core-Wall Systems for Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1149
Year of Publication
2014
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shafts and Chases
Author
Dunbar, Andrew
Organization
University of Canterbury
Year of Publication
2014
Country of Publication
New Zealand
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shafts and Chases
Topic
Seismic
Design and Systems
Keywords
Post-Tensioned
Core-Walls
Quasi-Static
Seismic Loading
Multi-Storey
U-Shaped Flexural Plates
Language
English
Research Status
Complete
Summary
This thesis discusses the results of experimental tests on two post-tensioned timber core-walls, tested under bi-directional quasi-static seismic loading. The half-scale two-storey test specimens included a stair with half-flight landings. Multi-storey timber structures are becoming increasingly desirable for architects and building owners due to their aesthetic and environmental benefits. In addition, there is increasing public pressure to have low damage structural systems with minimal business interruption after a moderate to severe seismic event. Timber has been used extensively for low-rise residential structures in the past, but has been utilised much less for multi-storey structures, traditionally limited to residential type building layouts which use light timber framing and include many walls to form a lateral load resisting system. This is undesirable for multi-storey commercial buildings which need large open spaces providing building owners with versatility in their desired floor plan. The use of Cross-Laminated Timber (CLT) panels for multi-storey timber buildings is gaining popularity throughout the world, especially for residential construction. Previous experimental testing has been done on the in-plane behaviour of single and coupled post-tensioned timber walls at the University of Canterbury and elsewhere. However, there has been very little research done on the 3D behaviour of timber walls that are orthogonal to each other and no research to date into post-tensioned CLT walls. The “high seismic option” consisted of full height post-tensioned CLT walls coupled with energy dissipating U-shaped Flexural Plates (UFPs) attached at the vertical joints between coupled wall panels and between wall panels and the steel corner columns. An alternative “low seismic option” consisted of post-tensioned CLT panels connected by screws, to provide a semi-rigid connection, allowing relative movement between the panels, producing some level of frictional energy dissipation.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.