Skip header and navigation

3 records – page 1 of 1.

Influence of the Treatment Phase on the Gluing Performance of Glued Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2578
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)

Development Of CLT Products with Improved Fire Performance

https://research.thinkwood.com/en/permalink/catalogue2598
Year of Publication
2020
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Author
He, Guangbo
Feng, Martin
Roussiere, Fabrice
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Fire
Keywords
Fire Resistance
Adhesives
Bond Durability
Bonding
Treated Wood
Language
English
Research Status
Complete
Summary
The fire resistance of cross-laminated timber (CLT) could be improved by treating the lamina with fire retardants. The major issues with this technology are the reduced bondability of the treated lamina with commercial adhesives. This study assessed several surface preparation methods that could improve the bondability and bond durability of fire-retardant treated wood with two commercial adhesives. Four surface preparation methods, including moisture/heat/pressure, surface planing, surface chemical treatment, and surface plasma treatment were assessed for their impact on the bondability and bond durability of lodgepole pine lamina. The block shear test results indicated that all surface preparation methods were somewhat effective in improving bond performance of fire-retardant treated wood compared to the untreated control wood samples, depending on the types of fire retardants and wood adhesives applied in the treatment process and bonding process. The selection of surface preparation, fire retardant, and wood adhesive should be considered interactively to obtain the best bond properties and fire performance. It may be possible to effectively bond the treated lamina with PUR adhesive without any additional surface preparation for the fire retardant used in the treatment at FPInnovations.
Online Access
Free
Resource Link
Less detail

Expanding Mass Timber and CLT Markets for High Termite Risk Applications

https://research.thinkwood.com/en/permalink/catalogue2790
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Moisture
Keywords
Termites
Moisture
Treated Wood
Field Testing
Hawaii
Research Status
In Progress
Notes
Project contacts are Gerald Presley, Oregon State University, and Scott Noble, Kaiser+Path
Summary
The primary goal of this project is to enhance the durability of mass timber assemblies in high-moisture, high-termite risk regions. Only a few U.S. jurisdictions allow mass timber use by code adoption. Hawaii requires that all structural wood be treated to resist insects. Current topical or pressure treatments are allowed, but it is unclear how these treatments will perform in mass timber elements. Assembled cross-laminated timber (CLT) panels are too large to fit in pressure vessels. We will test the performance of individually treated wood members (lamella), assembled into CLT panels for compliance to structural requirements as well as resistance to termite attack in field trials. The resulting data will identify the most effective treatment options to protect CLT and other mass timber assemblies for use in Hawaii and similar regions with high termite exposure. The research implications will contribute to educating architects, engineers, builders and developers on modern timber construction in new regions.
Resource Link
Less detail