Skip header and navigation

2 records – page 1 of 1.

Duration-Of-Load and Size Effects on the Rolling Shear Strength of Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue191
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Li, Yuan
Organization
University of British Columbia
Year of Publication
2015
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Long-term
Mountain Pine Beetle
Short-term
Duration of Load
Rolling Shear Strength
Torque Loading Tests
Research Status
Complete
Summary
In this study, the duration-of-load and size effects on the rolling shear strength of CLT manufactured from MPB-afflicted lumber were evaluated. The study of the duration-of-load effect on the strength properties of wood products is typically challenging; and, additional complexity exists with the duration-of-load effect on the rolling shear strength of CLT, given the necessary consideration of crosswise layups of wood boards, existing gaps and glue bonding between layers. In this research, short-term ramp loading tests and long-term trapezoidal fatigue loading tests (damage accumulation tests) were used to study the duration-of-load behaviour of the rolling shear strength of CLT. In the ramp loading test, three-layer CLT products showed a relatively lower rolling shear load-carrying capacity. Torque loading tests on CLT tubes were also performed. The finite element method was adopted to simulate the structural behaviour of CLT specimens. Evaluation of the rolling shear strength based on test data was discussed. The size effect on the rolling shear strength was investigated. The results suggest that the rolling shear duration-of-load strength adjustment factor for CLT is more severe than the general duration-ofload adjustment factor for lumber, and this difference should be considered in the introduction of CLT into the building codes for engineered wood design.
Online Access
Free
Resource Link
Less detail

Torque Loading Tests on the Rolling Shear Strength of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1416
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Lam, Frank
Li, Yuan
Li, Minghao
Publisher
Springer Japan
Year of Publication
2016
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Rolling Shear Strength
Polyurethane
Mountain Pine Beetle
Torque Loading Tests
Failure Modes
Monte Carlo
Finite Element Model
Brittle Failure
Research Status
Complete
Series
Journal of Wood Science
Summary
In this study , torque loading tests on small shear blocks were performed to evaluate the rolling shear strength of cross-laminated timber (CLT). The CLT plates in the tests were manufactured with Mountain Pine Beetle-afflicted lumber boards and glued with polyurethane adhesive; two types of layups (five-layer and three-layer) with a clamping pressure 0.4 MPa were studied. The small block specimens were sampled from full-size CLT plates and the cross layers were processed to have an annular cross section. These specimens were tested under torque loading until brittle shear failure occurred in the middle cross layers. Based on the test results, the brittle shear failure in the specimens was evaluated by detailed finite element models to confirm the observed failure mode was rolling shear. Furthermore, a Monte Carlo simulation procedure was performed to investigate the occurrence probability of different shear failure modes in the tests considering the randomness of the rolling shear strength and longitudinal shear strength properties in the wood material. The result also suggested the probability of rolling shear failure is very high, which gives more confident proof that the specimens failed dominantly in rolling shear. It was also found that the torque loading test method yielded different rolling shear strength values compared to the previous research from short-span beam bending tests; such a difference may mainly be due to the different stressed volumes of material under different testing methods, which can be further investigated using the size effect theory in the future.
Online Access
Free
Resource Link
Less detail