Skip header and navigation

23 records – page 1 of 3.

Air-Coupled Ultrasound Propagation and Novel Non-Destructive Bonding Quality Assessment of Timber Composites

https://research.thinkwood.com/en/permalink/catalogue13
Year of Publication
2012
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
General Application

Cathedral Hill 2: Challenges in the Design of a Tall All-Timber Building

https://research.thinkwood.com/en/permalink/catalogue1660
Year of Publication
2016
Topic
Design and Systems
Seismic
Wind
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Below, Kevin
Sarti, Francesco
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Wind
Keywords
Pres-Lam
Dynamic Behaviour
Nonlinear Time History Analysis
Wind Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3633-3640
Abstract
The paper presents the design and modelling of Cathedral Hill 2, a 15-storey timber building, planned for construction in Canada. The building is a 59-metre tall office-use construction with an all-timber structure where the lateral-load-resisting system consists of segmented Pres-Lam walls...
Online Access
Free
Resource Link
Less detail

Chapter 6: Duration of Load and Creep Factors for Cross-Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue825
Year of Publication
2013
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Pirvu, Ciprian
Douglas, Bradford
Yeh, Borjen
Organization
FPInnovations
Binational Softwood Lumber Council
Year of Publication
2013
Country of Publication
Canada
United States
Format
Book Section
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Mechanical Properties
Keywords
Creep
Duration of Load
Time Dependent Behavior
Language
English
Research Status
Complete
Series
CLT Handbook - US Edition
ISBN
978-0-86488-553-1
ISSN
1925-0495
Abstract
Cross-laminated timber (CLT) products are used as load-carrying slab and wall elements in structural systems, thus load duration and creep behavior are critical characteristics that must be addressed in structural design. Given its lay-up construction with orthogonal arrangement of layers bonded with structural adhesive, CLT is more prone to time-dependent deformations under load (creep) than other engineered wood products such as structural glued-laminated timber. Time dependent behavior of structural wood products is addressed in design standards by load duration factors that adjust design properties. Since CLT has been recently introduced into the North American market, the current design standards and building codes do not specify load duration and creep adjustment factors for CLT. Until this can be rectified, an approach is proposed in this Chapter for adopter of CLT systems in the United States. This includes not only load duration and service factors, but also an approach to accounting for creep in CLT structural elements.
Online Access
Free
Resource Link
Less detail

Controlled Rocking Cross-Laminated Timber Walls for Regions of Low-to-Moderate Seismicity

https://research.thinkwood.com/en/permalink/catalogue1726
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Kovacs, Mike
Wiebe, Lydell
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
North America
Canada
Nonlinear Time History Analysis
Prototype
Controlled Rocking Heavy Timber Walls
Drifts
Energy Dissipation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4671-4680
Abstract
Controlled rocking heavy timber walls (CRHTW) were originally developed in New Zealand as a low-damage seismic force resisting system using Laminated Veneer Lumber (LVL). This paper examines one way of adapting them to regions of low-to-moderate seismicity in North America, using Cross-Laminated Timber (CLT) composed of...
Online Access
Free
Resource Link
Less detail

Direct Displacement Based Design of A Novel Hybrid Structure: Steel Moment-Resisting Frames with Cross Laminated Timber Infill Walls

https://research.thinkwood.com/en/permalink/catalogue15
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Dynamic Behaviour of Dowel-Type Connections Under In-Service Vibration

https://research.thinkwood.com/en/permalink/catalogue884
Year of Publication
2013
Topic
Connections
Serviceability
Acoustics and Vibration
Material
Solid-sawn Heavy Timber
Application
Frames
Beams

Energy Based Seismic Design of a Multi-Storey Hybrid Building: Timber-Steel Core Walls

https://research.thinkwood.com/en/permalink/catalogue1271
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems

Evaluation of the Moisture Content in Stiffness Properties of Structural Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue282
Year of Publication
2015
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Lahr, Francisco
Christoforo, André
de Campos, Cristiane
Morales, Elen
Barbosa, Juliana
Panzera, Túlio
Publisher
Scientific.net
Year of Publication
2015
Country of Publication
Switzerland
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Modulus of Elasticity
Storage Time
Static Bending Test
Language
English
Research Status
Complete
Series
Advanced Materials Research
Abstract
This research aimed to evaluate the influence of storage time (0, 96 hours) of Pinus elliottiipieces and the tests to obtaining modulus of elasticity (static bending and transversal vibration) in glued laminated timber beams, produced with resorcinol...
Online Access
Free
Resource Link
Less detail

Higher Mode Effects in Multi-Storey Timber Buildings with Varying Diaphragm Flexibility

https://research.thinkwood.com/en/permalink/catalogue1480
Year of Publication
2017
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Author
Moroder, Daniel
Sarti, Francesco
Pampanin, Stefano
Smith, Tobias
Buchanan, Andrew
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Topic
Seismic
Mechanical Properties
Keywords
Nonlinear Time History Analysis
Higher Mode Effects
Stiffness
Diaphragms
Inter-Story Drift
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Abstract
With the increasing acceptance and popularity of multi-storey timber buildings up to 10 storeys and beyond, the influence of higher mode effects and diaphragm stiffness cannot be overlooked in design. Due to the lower stiffness of timber lateral load resisting systems compared with traditional construction materials, the effect...
Online Access
Free
Resource Link
Less detail

Improving the Sound Absorption of Cross-Laminated Timber Panels Using Resonant Absorbent Layer

https://research.thinkwood.com/en/permalink/catalogue1265
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Rooms

23 records – page 1 of 3.