Properly designed wooden truss bridges are environmentally compatible construction systems. The sharp decline in the erection of such structures in the past decades can be led back to the great effort needed for design and production. Digital parametric design and automated prefabrication approaches allow for a substantial improvement of the efficiency of design and manufacturing processes. Thus, if combined with a constructive wood protection following traditional building techniques, highly efficient sustainable structures are the result. The present paper describes the conceptual design for a wooden truss bridge drawn up for the overpass of a two-lane street crossing the university campus of one of Vienna’s main universities. The concept includes the greening of the structure as a shading design element. After an introduction, two Austrian traditional wooden bridges representing a good and a bad example for constructive wood protection are presented, and a state of the art of the production of timber trusses and greening building structures is given as well. The third part consists of the explanation of the boundary conditions for the project. Subsequently, in the fourth part, the conceptual design, including the design concept, the digital parametric design, the optimization, and the automated prefabrication concept, as well as the potential greening concept are discussed, followed by a summary and outlook on future research.
Due to the efficiency, sustainability, and advances in firefighting technologies, the allowable height for wood buildings was increased from 4 to 6 storeys in 2015 and will be further increased to 12 storeys in the 2020 edition of the National Building Code of Canada, as a result of the advent and application of mass timber products. To match the development in the industry and the increasing need in the market for highly skilled timber engineers, structural timber design curricula at the university level must evolve to train the next generation of practitioners. At most Canadian universities, structural timber design courses are mainly provided in civil engineering departments. In this study, 31 accredited civil engineering programs in Canada were reviewed for structural wood design content at undergraduate and graduate levels based on two surveys conducted in 2018 and 2020. In the 2018 survey, the percentage of structural timber design content was estimated and compared with other engineering materials (e.g., steel, concrete, and masonry), and a similar survey was repeated in 2020 to determine if any significant changes had occurred. In early 2021, two complementary questionnaires were sent to the instructors of timber-related courses across the country to collect quantitative information, including enrollment statistics, percentage dedicated to timber design in combined material courses, and potential topics deemed critical to support the design of modern timber structures. Based on the responses provided, and also on the availability of resources and the research ongoing, the content for five advanced-level courses is proposed to address the needs of the timber design community. The findings presented in this paper will assist the timber industry, government agencies, and educational institutions in effecting potential changes to university curricula to educate the next generation of timber design professionals who will possess the necessary skills and knowledge to meet the challenges in designing modern mass timber structures.