Skip header and navigation

4 records – page 1 of 1.

Design Concept for a Greened Timber Truss Bridge in City Area

https://research.thinkwood.com/en/permalink/catalogue2392
Year of Publication
2020
Topic
Design and Systems
Environmental Impact
Application
Bridges and Spans
Author
Kromoser, Benjamin
Ritt, Martin
Spitzer, Alexandra
Stangl, Rosemarie
Idam, Friedrich
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Application
Bridges and Spans
Topic
Design and Systems
Environmental Impact
Keywords
Wooden Trusses
Timber Bridges
Timber Engineering
Greened Structures
Vertical Green
Sustainable Structural Engineering
Digital Design
Parametric Design
Automated Construction
Resource-Efficient Structural Engineering
Research Status
Complete
Series
Sustainability
Summary
Properly designed wooden truss bridges are environmentally compatible construction systems. The sharp decline in the erection of such structures in the past decades can be led back to the great effort needed for design and production. Digital parametric design and automated prefabrication approaches allow for a substantial improvement of the efficiency of design and manufacturing processes. Thus, if combined with a constructive wood protection following traditional building techniques, highly efficient sustainable structures are the result. The present paper describes the conceptual design for a wooden truss bridge drawn up for the overpass of a two-lane street crossing the university campus of one of Vienna’s main universities. The concept includes the greening of the structure as a shading design element. After an introduction, two Austrian traditional wooden bridges representing a good and a bad example for constructive wood protection are presented, and a state of the art of the production of timber trusses and greening building structures is given as well. The third part consists of the explanation of the boundary conditions for the project. Subsequently, in the fourth part, the conceptual design, including the design concept, the digital parametric design, the optimization, and the automated prefabrication concept, as well as the potential greening concept are discussed, followed by a summary and outlook on future research.
Online Access
Free
Resource Link
Less detail

Ontario Wood Bridge Reference Guide

https://research.thinkwood.com/en/permalink/catalogue2132
Year of Publication
2017
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Rebuilding the timber bridge supply chain

https://research.thinkwood.com/en/permalink/catalogue3038
Year of Publication
2021
Topic
General Information
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Lum, Conroy
Mazloomi, Mohammad-Sadegh
Organization
FPInnovations
Year of Publication
2021
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
General Information
Keywords
Timber Bridges
Glulam Bridge
Maintenance
Remote Monitoring
Inspection
Research Status
Complete
Summary
Although a much smaller market than housing, there is a long history of building bridges in wood. For many years, short span bridges particularly for resource roads or roads to access recreational areas were built in timber or glued-laminated timber. While some of these bridges still exist today, many have been replaced with concrete or concrete-on-steel solutions. Along with this decline in new timber bridges is the loss of expertise in timber bridge design and construction, and the adoption of new timber construction technology. Given the continuing efforts underway to develop the market for the use of mass timber in building construction, restoring the use of timber in bridges can complement this effort and help to provide more opportunities for the developing mass timber supply chain.
Online Access
Free
Resource Link
Less detail

Stress-laminated timber decks in bridges: Friction between lamellas, butt joints and pre-stressing system

https://research.thinkwood.com/en/permalink/catalogue2891
Year of Publication
2020
Application
Decking
Author
Massaro, Francesco Mirko
Malo, Kjell Arne
Organization
Norwegian University of Science and Technology
Publisher
Elsevier
Year of Publication
2020
Format
Journal Article
Application
Decking
Keywords
Stress Laminated
Timber Bridges
Butt-Joint
Stiffness
Friction
Pre-Stress
Research Status
Complete
Series
Engineering Structures
Summary
Stress-laminated timber (SLT) decks in bridges are popular structural systems in bridge engineering. SLT decks are made from parallel timber beams placed side by side and pre-stressed together by means of steel rods. SLT decks can be in any length by just using displaced butt joints. The paper presents results from friction experiments performed in both grain and transverse direction with different levels of pre-stress. Numerical simulations of these experiments in addition to comparisons to full-scale experiments of SLT decks presented in literature verified the numerical model approach. Furthermore, several alternative SLT deck configurations with different amounts of butt joints and pre-stressing rod locations were modelled to study their influence on the structural properties of SLT decks. Finally, some recommendations on design of SLT bridge decks are given.
Online Access
Free
Resource Link
Less detail