The performance of timber in fire is often assessed by measuring the temperature at different positions in the specimen. As timber is a low conductive material, it can be difficult to measure the correct temperature.Therefore, this paper shows how to correctly measure the temperature in timber members and how to describe temperature measurements of fire tests and experiments non-ambiguously.Typical temperature measurement setups used in tests and experiments were experimentally assessed under ISO/EN fire exposure and a constant incident radiant heat flux. By comparing the charring depth and the thermocouple readings(charring temperature 300°C) it was found that only the wire thermocouples inlaid parallel to the isotherms deliver correct temperature readings. For other temperature measurement setups, the underestimation was between 5 and 20 minutes.Due to the numerous factors influencing the measurement error, no correction factor could be defined.
A. Fire Test Results Summary
B. Test 1a (Test 1): Beam-Exterior Column Connection Report
C. Test 1a (Test 2): Beam-Exterior Column Connection Report
D. Test 1a (Test 3): Beam-Exterior Column Connection Report
E. Test 1a (Test 4): Beam-Exterior Column Connection Report
F. Test 1b (Test 1): CLT Deck to Beam Report
G. Test 1b (Test 2): CLT Deck to Beam Report
H. Test 1b (Test 3): CLT Deck to Beam Report
I. Test 1c: Penetrations Fire Resistance Rating Report (TBD)
J. Test 1d: Wall Fire Resistance Rating Report
FPInnovations is involved in a large research project regarding CLT construction. One objective of this research is the creation of a design methodology for calculating the fire-resistance of CLT assemblies/construction. This methodology will foster the design of fire-safe buildings of wood or hybrid construction. In order to establish such calculation methods, a series of experimental tests has been undertaken. A total of eight full-scale CLT fire resistance tests have been conducted at the NRC fire laboratory where the panels were subject to the standard ULC S101 [1] fire exposure. The series consisted of three wall and five floor tests. Each test was unique using panels with a different number of plies and varying thicknesses. Some of the assemblies were protected using CGC Sheetrock® FireCode® Core Type X gypsum board while others were left unprotected.