Skip header and navigation

2 records – page 1 of 1.

Fire Resistance of Assemblies in Massive Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2671
Topic
Fire
Application
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Application
Wood Building Systems
Topic
Fire
Keywords
Thermo-Mechanical Behaviour
Analytical Approach
Fire Resistance
Research Status
In Progress
Notes
Project contact is Christian Dagenais at Université Laval
Summary
The structural elements of a building must provide fire resistance in order to prevent collapse and to provide an escape route for occupants. The basic philosophy is that components that support elements with a degree of fire resistance must also offer the same degree of resistance. It is also assumed that the connections between these elements provide at least the same degree as the supported elements. Traditionally, heavy timber construction used ingenious construction principles and assemblies made of cast iron. With the advent of innovative fasteners (eg self-tapping screws), the principles of assembly have changed greatly and are now similar to a metal frame. So, several studies have been carried out in recent years in order to increase knowledge of the fire behavior of these assemblies (Audebert et al., 2012, Dhima 1999, Frangi et al. 2009, Peng 2010, Ohene 2014, Ali et al. 2014 , Moss et al. 2008). Although a significant amount of information is available in the literature, it often indicates short-term flammability resistance (± 30 min), which is largely insufficient for buildings having to provide a degree of fire resistance of at least 2 hours. The objective is to carry out a literature review in order to fully understand the factors influencing the fire performance of assemblies in wood construction. A model of thermomechanical behavior and a simplified analytical approach would have to be developed.
Resource Link
Less detail

Fire Resistance of Assemblies in Solid Wood Construction

https://research.thinkwood.com/en/permalink/catalogue2261
Topic
Fire
Organization
Université Laval
Country of Publication
Canada
Topic
Fire
Keywords
Fasteners
Thermo-Mechanical Behaviour
Research Status
In Progress
Notes
Contact: Christian Dagenais, Université Laval
Summary
With the arrival of innovative fasteners (e.g. self-tapping screws), assembly principles have greatly changed and now resemble a metal framework. Although a significant amount of information is available in the literature, it often indicates short-term flammability resistance (± 30 min), which is largely insufficient for buildings that need to provide a fire resistance rating of at least 2 hours. The objective is to carry out a literature review to understand the factors influencing the fire performance of assemblies in wood construction. A modeling of thermomechanical behavior and a simplified analytical approach should be developed. Testing from an intermediate furnace is likely to be required to validate model assumptions.
Less detail