Skip header and navigation

3 records – page 1 of 1.

Analysis of the Characteristics of External Walls of Wooden Prefab Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2694
Year of Publication
2020
Topic
Energy Performance
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Švajlenka, Jozef
Kozlovská, Mária
Badida, Miroslav
Moravec, Marek
Dzuro, Tibor
Vranay, František
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Energy Performance
Acoustics and Vibration
Keywords
Acoustic Properties
Thermal Properties
Prefabrication
Research Status
Complete
Series
Energies
Summary
A balanced combination of heat flows creates suitable conditions for thermal comfort—a factor contributing to the quality of the internal environment of buildings. The presented analysis of selected thermal-technical parameters is up-to-date and suitable for verifying the parameters of building constructions. The research also applied a methodology for examining the acoustic parameters of structural parts of buildings in laboratory conditions. In this research, selected variant solutions of perimeter walls based on prefab cross laminated timber were investigated in terms of acoustic and thermal-technical properties. The variants structures were investigated in laboratory but also in model conditions. The results of the analyses show significant differences between the theoretical or declared parameters and the values measured in laboratory conditions. The deviations of experimental measurements from the calculated or declared parameters were not as significant for variant B as they were for variant A. These findings show that for these analyzed sandwich structures based on wood, it is not always possible to reliably declare calculated values of thermal-technical and acoustic parameters. It is necessary to thoroughly examine such design variants, which would contribute to the knowledge in this field of research of construction systems based on wood.
Online Access
Free
Resource Link
Less detail

Eco-Sustainable Wood Waste Panels for Building Applications: Influence of Different Species and Assembling Techniques on Thermal, Acoustic, and Environmental Performance

https://research.thinkwood.com/en/permalink/catalogue2892
Year of Publication
2021
Topic
Market and Adoption
Material
Other Materials
Author
Merli, Francesca
Belloni, Elisa
Buratti, Cinzia
Organization
University of Perugia
Editor
Tannert, Thomas
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
Other Materials
Topic
Market and Adoption
Keywords
Recycled Wood Waste
Eco-sustainable Panels
Thermal Properties
Acoustic Characteristics
Life-Cycle Assessment
Research Status
Complete
Series
Buildings
Summary
Multiple high quality wood waste from a window manufacturer is identified and collected. Eco-sustainable panels, with promising acoustic and thermal insulating performance, were then fabricated. The available wood is of different tree species (pine, oak, and mahogany) and size (pieces of wood, mixed coarse chips, and mixed fine chips). Moreover, scraps of olive tree pruning from local areas were collected for reuse. The aim of the research is to assembly panels (300 × 300 mm2) both with different techniques (hand-made and hot-pressed) and type of adhesive (vinyl and flour glues) and to evaluate their thermal, acoustic, and environmental performance. All the panels present thermal and acoustic performance comparable with the similar ones available in the literature or with commercial solutions. The thermal conductivity varies in the 0.071 to 0.084 W/mK range at an average temperature of 10 °C, depending on the tree species, the assembly technique, and regardless of the type of adhesive used. Oak wood panels are characterized by both better sound absorption (a peak value of 0.9, similar to pine pressed sample with flour glue) and insulation (transmission loss up to 11 dB at 1700 Hz) properties. However, their added value is the low environmental impact assessed through life cycle analysis in compliance with ISO 14040, especially for panels assembled with natural glue.
Online Access
Free
Resource Link
Less detail

Thermal conductivity of engineered bamboo composites

https://research.thinkwood.com/en/permalink/catalogue3031
Year of Publication
2016
Topic
Energy Performance
Material
Other Materials
Author
Shah, Darshil U.
Bock, Maximilian C. D.
Mulligan, Helen
Ramage, Michael H.
Organization
University of Cambridge
Publisher
Springer
Year of Publication
2016
Format
Journal Article
Material
Other Materials
Topic
Energy Performance
Keywords
Thermal Properties
Thermal Conductivity
Engineered Bamboo Composites
Research Status
Complete
Series
Journal of Materials Science
Summary
Here we characterise the thermal properties of engineered bamboo panels produced in Canada, China, and Colombia. Specimens are processed from either Moso or Guadua bamboo into multi-layered panels for use as cladding, flooring or walling. We utilise the transient plane source method to measure their thermal properties and confirm a linear relationship between density and thermal conductivity. Furthermore, we predict the thermal conductivity of a three-phase composite material, as these engineered bamboo products can be described, using micromechanical analysis. This provides important insights on density-thermal conductivity relations in bamboo, and for the first time, enables us to determine the fundamental thermal properties of the bamboo cell wall. Moreover, the density-conductivity relations in bamboo and engineered bamboo products are compared to wood and other engineered wood products. We find that bamboo composites present specific characteristics, for example lower conductivities—particularly at high density—than equivalent timber products. These characteristics are potentially of great interest for low-energy building design. This manuscript fills a gap in existing knowledge on the thermal transport properties of engineered bamboo products, which is critical for both material development and building design.
Online Access
Free
Resource Link
Less detail