Skip header and navigation

3 records – page 1 of 1.

Checking in CLT Panels: An Exploratory Study

https://research.thinkwood.com/en/permalink/catalogue2625
Year of Publication
2011
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Casilla, Romulo
Lum, Conroy
Pirvu, Ciprian
Wang, Brad
Organization
FPInnovations
Year of Publication
2011
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Moisture
Keywords
Panels
Testing Methods
Surface Checks
Moisture Content
Gaps
Language
English
Research Status
Complete
Summary
A study was conducted with the primary objective of gathering information for the development of a protocol for evaluating the surface quality of cross-laminated timber (CLT) products. The secondary objectives were to examine the effect of moisture content (MC) reduction on the development of surface checks and gaps, and find ways of minimizing the checking problems in CLT panels. The wood materials used for the CLT samples were rough-sawn Select grade Hem-Fir boards 25 x 152 mm (1 x 6 inches). Polyurethane was the adhesive used. The development of checks and gaps were evaluated after drying at two temperature levels at ambient relative humidity (RH). The checks and gaps, as a result of drying to 6% to 10% MC from an initial MC of 13%, occurred randomly depending upon the characteristics of the wood and the manner in which the outer laminas were laid up in the panel. Suggestions are made for minimizing checking and gap problems in CLT panels. The checks and gaps close when the panels are exposed to higher humidity. Guidelines were proposed for the development of a protocol for classifying CLT panels into appearance grades in terms of the severity of checks and gaps. The grades can be based on the estimated dimensions of the checks and gaps, their frequency, and the number of laminas in which they appear.
Online Access
Free
Resource Link
Less detail

Evaluation of the Out-of-Plane Shear Properties of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2517
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Wood Innovation Research Laboratory (WIRL) Building Research Report

https://research.thinkwood.com/en/permalink/catalogue2577
Year of Publication
2020
Topic
Design and Systems
Energy Performance
Material
Glulam (Glue-Laminated Timber)
Application
Building Envelope
Organization
University of Northern British Columbia
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Building Envelope
Topic
Design and Systems
Energy Performance
Keywords
Performance
Sensors
Testing Methods
Energy Consumption
Thermal Performance
Language
English
Research Status
Complete
Summary
The purpose of this research is to investigate what differences, if any, exist between the modeled energy consumption and building envelope performance of the Wood Innovation Research Laboratory (WIRL) building following eight months of in-situ data collection. The WIRL building was completed in July of 2018 by the University of Northern British Columbia (UNBC) and is located in Prince George, British Columbia. Built in partnership with the Province of British Columbia, the building was designed to meet Passive House standards, a building certification system that requires the building to have low energy input requirements due to high levels of thermal insulation and minimal air leakage. To ensure the building achieves the established energy use targets set forth under the Passive House certification system, a computer model of the proposed building design must be completed prior to the start of construction using the Passive House Planning Package (PHPP) software. Inputs to the model include envelope design, mechanical energy use, building location and airtightness value. Key outputs included the predicted annual heating demand (kWh/m2a), total primary energy demand (kWh/m2a), and air tightness of the building envelope (ACH@50Pa). Based on the final building design model and test results achieved following completion, the WIRL building was deemed to have met all Passive House requirements and certification was achieved. To complete on-going data collection of the in-situ performance of the WIRL building, temperature and humidity sensors were installed in two of the exterior wall assemblies and the building’s floor. In addition, gas and electrical energy use meters were installed to monitor the building’s energy consumption. The installation of all equipment was made possible by Forest Innovation Investment through their 2018/2019 Wood First Program.
Online Access
Free
Resource Link
Less detail