Skip header and navigation

Refine Results By

231 records – page 1 of 24.

Ability of Finger-Jointed Lumber to Maintain Load at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1832
Year of Publication
2018
Topic
Fire
Material
Other Materials
Author
Rammer, Douglas
Zelinka, Samuel
Hasburgh, Laura
Craft, Steven
Publisher
Forest Products Laboratory
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
Other Materials
Topic
Fire
Keywords
Small Scale
Full Scale
Bending Test
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Creep
Polyurethane
Polyvinyl Acetate
Temperature
Durability
Language
English
Research Status
Complete
Series
Wood and Fiber Science. 50(1): 44-54.
Online Access
Free
Resource Link
Less detail

Accurate Strength Parameters for Fasteners with Examples for Ring Shank Nails

https://research.thinkwood.com/en/permalink/catalogue1510
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Munch-Andersen, Jørgen
Svensson, Staffan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Withdrawal Test
Ring Shank Nails
Fasteners
Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 344-352
Summary
Strength parameters for fasteners determined in accordance with the methods prescribed for the European CE-marking leads to quite different values for seemingly similar products from different manufactures. The results are hardly repeatable, to some extent due to difficulties in selecting representative timber samples for the testing. Beside this uncertainty, the declared values available to the designer concerns only structural timber, so no strength parameters are available for common engineered wood products such as LVL or plywood
Online Access
Free
Resource Link
Less detail

Adaptation of Advanced High R-Factor Bracing Systems into Heavy Timber Frames

https://research.thinkwood.com/en/permalink/catalogue1760
Year of Publication
2016
Topic
Seismic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Gilbert, Colin
Erochko, Jeffrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Mechanical Properties
Keywords
Quasi-Static
Cyclic Testing
Ductility
Damping Devices
R-factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5068-5077
Summary
Timber provides attractive earthquake performance characteristics for regions of high seismic risk, particularly its high strength-to-weight ratio; however, current timber structural systems are associated with relatively low design force reduction factors due to their low inherent ductility when compared to high-performance concrete and steel...
Online Access
Free
Resource Link
Less detail

Advanced Modelling of Cross Laminated Timber (CLT) Panels in Bending

https://research.thinkwood.com/en/permalink/catalogue1796
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
HAL archives-ouvertes.fr
Year of Publication
2015
Country of Publication
Germany
Format
Presentation
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Bending
Model
Panels
Shear
Stiffness
Failure Behavior
Shear Force
Reference Test
Language
English
Conference
Euromech Colloquim 556 Theoretical Numerical and Experimental Analyses of Wood Mechanics
Research Status
Complete
Notes
May 2015, Dresde, Germany
Online Access
Free
Resource Link
Less detail

Advancing Tall Mass Timber Buildings through Seismic Resilience Testing

https://research.thinkwood.com/en/permalink/catalogue2584
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Organization
University of Nevada
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Cores
Topic
Seismic
Keywords
Rocking Walls
Shake Table Test
Mass Timber
Non-structural Components and Systems
Research Status
In Progress
Notes
Project contact is Keri Ryan at University of Nevada, Reno
Summary
A landmark shake table test of a 10-story mass timber building will be conducted in late 2020. The test program, funded by other sources, will help accelerate the adoption of economically competitive tall timber buildings by validating the seismic performance of a resilient cross-laminated timber (CLT) rocking wall system. In this project, we leverage and extend the test program by including critical nonstructural components and systems (NCS). Including NCSs, which are most vulnerable to rocking induced deformations of the CLT core, allows investigation of the ramification of this emerging structural type on building resiliency. Quantifying interactions amongst vertically and horizontally spanning NCSs during earthquake shaking will allow designers to develop rational design strategies for future installation of such systems. The expected research outcomes are to expand knowledge of rocking wall system interactions with various NCS, identify NCS vulnerabilities in tall timber buildings, and develop solutions to address these vulnerabilities. Moreover, this effort will greatly increase visibility of the test program. The results of this research will be widely disseminated to timber design and NCS communities through conference presentations, online webinars, and distribution to publicly accessible research repositories. 
Less detail

Air-Coupled Ultrasound Propagation and Novel Non-Destructive Bonding Quality Assessment of Timber Composites

https://research.thinkwood.com/en/permalink/catalogue13
Year of Publication
2012
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Martín, Sergio
Organization
ETH Zurich
Year of Publication
2012
Country of Publication
Switzerland
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Adhesives
Bonding
Delamination
Failure
Non-Destructive Testing
Air-coupled Ultrasound (ACU)
Finite-Difference Time-Domain (FDTD) model
Language
English
Research Status
Complete
Summary
Glued laminated timber (glulam) is manufactured by gluing and stacking timber lamellas, which are sawn and finger-jointed parallel to the wood grain direction. This results in a sustainable and competitive construction material in terms of dimensional versatility and load-carrying capacity. With the proliferation of glued timber constructions, there is an increasing concern about safety problems related to adhesive bonding. Delaminations are caused by manufacturing errors and in service climate variations simultaneously combined with long-sustained loads (snow, wind and gravel filling on flat roofs). Several recent building collapses were related to bonding failure, which should be prevented in the future with a timely defect detection. As an outlook, the feasibility of air-coupled ultrasound tomography was demonstrated with numerical tests and preliminary experiments on glulam. The FDTD wave propagation model was excited by the difference of the time-reversed sound fields transmitted through a test and a reference (defect-free) glulam cross-section. Both datasets were obtained with the same SLT setup. Wave convergences then provided a map of bonding defects along the height and width of the inspected glulam cross-sections. Further research is envisaged in this direction
Online Access
Free
Resource Link
Less detail

Ambient Vibration Measurement Data of a Four-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2211
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Mugabo, Ignace
Barbosa, André
Riggio, Mariapaola
Batti, James
Publisher
Frontiers Media
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Albina Yard
Ambient Vibration Testing
Operational Modal Analysis
Language
English
Research Status
Complete
Series
Frontiers in Built Environment
ISSN
2297-3362
Online Access
Free
Resource Link
Less detail

An Evaluation of Strength Performance of the Edge Connections between Cross-laminated Timber Panels Reinforced with Glass Fiber-reinforced Plastic

https://research.thinkwood.com/en/permalink/catalogue2424
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

An Experimental Study on Buckling Strength with Laminated Veneer Lumber of Three Wood Species

https://research.thinkwood.com/en/permalink/catalogue1575
Year of Publication
2016
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Kambe, Wataru
Nakamura, Madoka
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Japanese Larch
Japanese Cypress
Japanese Cedar
Compression Test
Deflection
Strain
Buckling Strength
Slenderness Ratio
Bending Deflection
Maximum Strength
Yield Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1698-1706
Summary
In the past study, we conducted compression tests with laminated veneer lumber of Japanese Larch. We observed the deflection and strain behaviour. As a result we could evaluate the bucking strength with Euler’s equation and Tetmajer’s method. For structural design we should expand the versatility of that method. Three wood species for structural members would be selected for these tests. Those were Japanese larch, Japanese cypress and Japanese cedar. For the test parameter, we set the 8types of slenderness ratio for the compression test and we conducted monotonic compression tests with pin-supported on both edges. For the mechanical properties we conducted compression tests with short column members and got yield compression for those materials. In the compression tests, we could see the bending deflection. We would get the ratio the maximum strength and yield strength for distinguish the limited slenderness ratio. As a result it was cleared that the limit slenderness ratio of these wood species was 100. And we could confirm that the Tetmajer’s method is useful for evaluation the yield strength.
Online Access
Free
Resource Link
Less detail

An Innovative Hybrid Timber Structure in Japan: Beam-to-Beam Moment Resisting Connection

https://research.thinkwood.com/en/permalink/catalogue1581
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Kusumoto, Shigeharu
Shioya, Shinichi
Kawabe, Ryosuke
Inomoto, Kotaro
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Steel Bars
Epoxy
Beam-to-Beam
Four Point Bending Test
Short-term
Long-term
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1791-1798
Summary
Hybrid composite glulam timber reinforced using deformed steel bars and epoxy resin adhesive (RGTSB), was significantly developed in Kagoshima University. In this paper, a beam-to-beam connection for RGTSB and experimental data on the connection are presented. Two 2:3-scaled simply-supported beams under four-point flexural bending in short-term loading, connection elements under short and long-term tension loading were tested. The connection for RGTSB beam performed on bending behaviour such as non-connection RGTSB beam, especially better on ductility.
Online Access
Free
Resource Link
Less detail

231 records – page 1 of 24.