Skip header and navigation

11 records – page 1 of 2.

Cross-Laminated Timber Design: Structural Properties, Standards, and Safety

https://research.thinkwood.com/en/permalink/catalogue2534
Year of Publication
2020
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Mahamid, Mustafa
Publisher
McGraw Hill
Year of Publication
2020
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural Design
Code Provisions
Design Recommendations
Sustainability
Environmental Issues
Research Status
Complete
Summary
This comprehensive guide explains the design standards, code provisions, and safety requirements engineers need to know to use cross-laminated timber as a structural building material. The book covers all applicable design considerations, including the relevant structural load requirements and fire safety requirements. Written by a collection of experts in the field, Cross-Laminated Timber Design: Structural Properties, Standards, and Safety introduces the material properties of CLT and goes on to cover the recommended lateral and vertical design standards. Design examples and case studies are featured throughout. You will get design recommendations for connections, building envelopes, acoustics for CLT projects, and much more. Sustainability and environmental issues are discussed in full detail. - Covers the latest methods and design techniques being used for CLT - Explains the code provisions in the NDS, ASCE 7, and IBC that apply to CLT - Include contributions from some of the leading experts in the field
Online Access
Payment Required
Resource Link
Less detail

Design of a novel seismic retrofitting system for RC structures based on asymmetric friction connections and CLT panels

https://research.thinkwood.com/en/permalink/catalogue2912
Year of Publication
2022
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Aloisoio, Angelo
Boggian, Francesco
Tomasi, Roberto
Organization
Università degli Studi dell’Aquila
Università degli Studi di Trento
Norwegian University of Life Science
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Seismic
Keywords
Friction-based Device
Seismic Protection
Structural Design
Reinforced-concrete Structures
Research Status
Complete
Series
Engineering Structures
Summary
Friction-based dampers are a valid solution for non-invasive seismic retrofitting interventions of existing structures, particularly reinforced-concrete (RC) structures. The design of friction-based dampers is challenging: underestimating the slip force prevents the full use of the potential of the device, which attains the maximum admissible displacement earlier than expected. By contrast, overestimating the slip force may cause delayed triggering of the device when the structure has suffered extensive damage. Therefore, designing the appropriate slip force is an optimization problem. The optimal slip force guarantees the highest inter-story drift reduction. The authors formulated the optimization problem for designing a specific class of friction-based dampers, the asymmetric friction connection (AFC), devised as part of the ongoing multidisciplinary Horizon 2020 research project e-SAFE (Energy and Seismic AFfordable rEnovation solutions). The seismic retrofitting technology involves the external application of modular prefabricated cross-laminated timber (CLT) panels on existing external walls. Friction dampers connect the CLT panels to the beams of two consecutive floors. The friction depends on the mutual sliding of two metal plates, pressed against each other by preloaded bolts. This study determines the optimal slip force, which guarantees the best seismic performance of an RC structural archetype. The authors investigate the nonlinear dynamic response of a coupled mechanical system (RC frame-friction damper) under a set of strong-motion earthquakes, using non-differential hysteresis models calibrated on the experimental cyclic responses. The solution of the optimization leads to the proposal of a preliminary simplified design procedure, useful for practitioners.
Online Access
Free
Resource Link
Less detail

Development of Novel Standardized Structural Timber Elements Using Wood-Wood Connections

https://research.thinkwood.com/en/permalink/catalogue2747
Year of Publication
2020
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Author
Gamerro, Julien
Publisher
Lausanne, EPFL
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Connections
Keywords
Timber Construction
Connections
Digital Fabrication
Design for Manufacturing and Assembly
Structural Design
Structural Frameworks
Semi-Rigid Connection
Experimental
Shear Strength
Compression Strength
Wood-Wood Connections
Bending Test
Bending Stiffness
Numerical Model
Load Carrying Capacity
Slip Modulus
Research Status
Complete
Summary
Traditional wood-wood connections, widely used in the past, have been progressively replaced by steel fasteners and bonding processes in modern timber constructions. However, the emergence of digital fabrication and innovative engineered timber products have offered new design possibilities for wood-wood connections. The design-to-production workflow has evolved considerably over the last few decades, such that a large number of connections with various geometries can now be easily produced. These connections have become a cost-competitive alternative for the edgewise connection of thin timber panels. Several challenges remain in order to broaden the use of this specific joining technique into common timber construction practice: (1) prove the applicability at the building scale, (2) propose a standardized construction system, (3) develop a convenient calculation model for practice, and (4) investigate the mechanical behavior of wood-wood connections. The first building implementation of digitally produced through-tenon connections for a folded-plate structure is presented in this work. Specific computational tools for the design and manufacture of more than 300 different plates were efficiently applied in a multi-stakeholder project environment. Cross-laminated timber panels were investigated for the first time, and the potential of such connections was demonstrated for different engineered timber products. Moreover, this work demonstrated the feasibility of this construction system at the building scale. For a more resilient and locally distributed construction process, a standardized system using through-tenon connections and commonly available small panels was developed to reconstitute basic housing components. Based on a case-study with industry partners, the fabrication and assembly processes were validated with prototypes made of oriented strand board. Their structural performance was investigated by means of a numerical model and a comparison with glued and nailed assemblies. The results showed that through-tenon connections are a viable alternative to commonly used mechanical fasteners. So far, the structural analysis of such construction systems has been mainly achieved with complex finite element models, not in line with the simplicity of basic housing elements. A convenient calculation model for practice, which can capture the semi-rigid behavior of the connections and predict the effective bending stiffness, was thus introduced and subjected to large-scale bending tests. The proposed model was in good agreement with the experimental results, highlighting the importance of the connection behavior. The in-plane behavior of through-tenon connections for several timber panel materials was characterized through an experimental campaign to determine the load-carrying capacity and slip modulus required for calculation models. Based on the test results, existing guidelines were evaluated to safely apply these connections in structural elements while a finite element model was developed to approximate their performance. This work constitutes a firm basis for the optimization of design guidelines and the creation of an extensive database on digitally produced wood-wood connections. Finally, this thesis provides a convenient design framework for the newly developed standardized timber construction system and a solid foundation for research into digitally produced wood-wood connections.
Online Access
Free
Resource Link
Less detail

Exploring the synergy between structural engineering design solutions and life cycle carbon footprint of cross-laminated timber in multi-storey buildings

https://research.thinkwood.com/en/permalink/catalogue2864
Year of Publication
2021
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dodoo, Ambrose
Nguyen, Truong
Dorn, Michael
Olsson, Anders
Bader, Thomas
Organization
Linnaeus University
Publisher
Taylor&Francis Group
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life Cycle Analysis
Climate Impacts
Structural Design
Multi-Storey
Research Status
Complete
Series
Wood Material Science & Engineering
Summary
Low-carbon buildings and construction products can play a key role in creating a low-carbon society. Cross-laminated timber (CLT) is proposed as a prime example of innovative building products, revolutionising the use of timber in multi-storey construction. Therefore, an understanding of the synergy between structural engineering design solutions and climate impact of CLT is essential. In this study, the carbon footprint of a CLT multi-storey building is analysed in a life cycle perspective and strategies to optimise this are explored through a synergy approach, which integrates knowledge from optimised CLT utilisation, connections in CLT assemblies, risk management in building service-life and life cycle analysis. The study is based on emerging results in a multi-disciplinary research project to improve the competitiveness of CLT-based building systems through optimised structural engineering design and reduced climate impact. The impacts associated with material production, construction, service-life and end-of-life stages are analysed using a process-based life cycle analysis approach. The consequences of CLT panels and connection configurations are explored in the production and construction stages, the implications of plausible replacement scenarios are analysed during the service-life stage, and in the end-of-life stage the impacts of connection configuration for post-use material recovery and carbon footprint are analysed. The analyses show that a reduction of up to 43% in the life cycle carbon footprint can be achieved when employing the synergy approach. This study demonstrates the significance of the synergy between structural engineering design solutions and carbon footprint in CLT buildings.
Online Access
Free
Resource Link
Less detail

Innovation in the Design of Cross Laminated Timber for Long Span Floors

https://research.thinkwood.com/en/permalink/catalogue2311
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors

Integrative structural design and engineering methods for segmented timber shells - BUGA Wood Pavilion

https://research.thinkwood.com/en/permalink/catalogue2903
Year of Publication
2021
Topic
Design and Systems
Application
Shell Structures
Author
Bechert, Simon
Sonntag, Daniel
Aldinger, Lotte
Knippers, Jan
Organization
University of Stuttgart
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Application
Shell Structures
Topic
Design and Systems
Keywords
Plate shells
Segmented Timber Shell
Lightweight Timber Structure
Form-finding
Optimization
Structural Design
Robitic Fabrication
Modular System
Finger Joints
Integrative design
Computational Design
Research Status
Complete
Series
Structures
Summary
The presented research describes the holistic development of a modular lightweight timber shell. So-called segmented timber shells approximate curved geometries with the use of planar plates, thus combining the excellent structural performance of double curved shells with the resource-efficient prefabrication of timber modules using only planar elements. Segmented timber shells constitute a novel building system that demands for innovative approaches on structural design and construction technologies. The geometric complexity of plate shells in conjunction with the particularities of the building material wood pose great challenges to the computational design and planning processes as structural requirements and fabrication constraints determine the shell design at early design phases. This paper discusses the design development and construction of the BUGA Wood Pavilion: A segmented timber shell structure made of hollow cassette components. Particular emphasis lies on the technical challenges of the employed building system, notably structural design and analysis, detailing solutions and the construction process. The authors further describe the integrative structural design and optimization methods developed for the timber shell in question. The BUGA Wood Pavilion demonstrates the possibilities of lightweight and sustainable wood architecture merging the merits of integrative design, structural engineering and high-tech robotic fabrication methods.
Online Access
Free
Resource Link
Less detail

Long-span Timber Roof Structure for the New Feyenoord Stadium

https://research.thinkwood.com/en/permalink/catalogue2575
Year of Publication
2019
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Roofs

Multi-Span Composite Timber Beams with Rational Steel Reinforcements

https://research.thinkwood.com/en/permalink/catalogue3064
Year of Publication
2021
Topic
Mechanical Properties
Application
Beams
Author
Lukin, Mikhail
Prusov, Evgeny
Roshchina, Svetlana
Karelina, Maria
Vatin, Nikolay
Organization
Vladimir State University
Moscow Automobile and Road Construction University
Peter the Great St. Petersburg Polytechnic University
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Application
Beams
Topic
Mechanical Properties
Keywords
Timber-Steel Hybrid Beam
Steel-Reinforced
Glued-in Rods
Girders
Strengthening
Mechanical Testing
Static Tests
Structural Design
Research Status
Complete
Series
Buildings
Summary
Wooden multi-span beams with steel reinforcement were studied experimentally on a stationary stand using an eight-point loading scheme that simulated a load uniformly distributed over the beam span. The studies were carried out on beams with a span of 4.8 m with a cross-sectional area of 40 mm × 80 mm, reinforced in the stretched zones of the cross-section with rods made of hot-rolled steel reinforcement of A400 class. The rational zones for the location of reinforcements in the tensioned and compressed zones of the beams were determined. The rational placements of reinforcement in the support and span zones was based on the numerical simulation of the volumetric stress state calculated using the finite element method. It was experimentally confirmed that the failure of wood composite beams had a plastic nature and occurred only along normal sections. This excluded the possibility of brittle fracture from shear stresses and ensured the operational reliability of structures as a whole. It was shown that the proposed rational reinforcement of wooden beams increased their bearing capacity by 175% and reduced bearing deformability by 85%. The results obtained indicated high efficiency of the application of the developed method of reinforcement in beams of roofs and floors of buildings.
Online Access
Free
Resource Link
Less detail

Tall Mass-Timber Building

https://research.thinkwood.com/en/permalink/catalogue2301
Year of Publication
2017
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Timber Engineering - Principles for Design

https://research.thinkwood.com/en/permalink/catalogue1922
Year of Publication
2017
Topic
Design and Systems
Serviceability
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Author
Blaß, Hans Joachim
Sandhaas, Carmen
Organization
Karlsruher Institut für Technologie
Publisher
KIT Scientific Publishing
Year of Publication
2017
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Topic
Design and Systems
Serviceability
Mechanical Properties
Keywords
Eurocode 5
European Standards
Structural Design
Research Status
Complete
Notes
DOI: 10.5445/KSP/1000069616
Summary
This comprehensive book provides in-depth knowledge and understanding of design rules according to Eurocode 5. It is based on the first edition of the STEP (Structural Timber Education Programme) series, which was prepared in 1995 by about 50 authors from 14 European countries. The present work updates and extends the STEP compilation and is aimed at students, structural engineers and other timber structure professionals.
Online Access
Free
Resource Link
Less detail

11 records – page 1 of 2.