Skip header and navigation

7 records – page 1 of 1.

Cross-Laminated Timber Design: Structural Properties, Standards, and Safety

https://research.thinkwood.com/en/permalink/catalogue2534
Year of Publication
2020
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Mahamid, Mustafa
Publisher
McGraw Hill
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural Design
Code Provisions
Design Recommendations
Sustainability
Environmental Issues
Language
English
Research Status
Complete
ISBN
1260117995
Summary
This comprehensive guide explains the design standards, code provisions, and safety requirements engineers need to know to use cross-laminated timber as a structural building material. The book covers all applicable design considerations, including the relevant structural load requirements and fire safety requirements. Written by a collection of experts in the field, Cross-Laminated Timber Design: Structural Properties, Standards, and Safety introduces the material properties of CLT and goes on to cover the recommended lateral and vertical design standards. Design examples and case studies are featured throughout. You will get design recommendations for connections, building envelopes, acoustics for CLT projects, and much more. Sustainability and environmental issues are discussed in full detail. - Covers the latest methods and design techniques being used for CLT - Explains the code provisions in the NDS, ASCE 7, and IBC that apply to CLT - Include contributions from some of the leading experts in the field
Online Access
Payment Required
Resource Link
Less detail

Development of Novel Standardized Structural Timber Elements Using Wood-Wood Connections

https://research.thinkwood.com/en/permalink/catalogue2747
Year of Publication
2020
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Author
Gamerro, Julien
Publisher
Lausanne, EPFL
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Connections
Keywords
Timber Construction
Connections
Digital Fabrication
Design for Manufacturing and Assembly
Structural Design
Structural Frameworks
Semi-Rigid Connection
Experimental
Shear Strength
Compression Strength
Wood-Wood Connections
Bending Test
Bending Stiffness
Numerical Model
Load Carrying Capacity
Slip Modulus
Language
English
Research Status
Complete
Summary
Traditional wood-wood connections, widely used in the past, have been progressively replaced by steel fasteners and bonding processes in modern timber constructions. However, the emergence of digital fabrication and innovative engineered timber products have offered new design possibilities for wood-wood connections. The design-to-production workflow has evolved considerably over the last few decades, such that a large number of connections with various geometries can now be easily produced. These connections have become a cost-competitive alternative for the edgewise connection of thin timber panels. Several challenges remain in order to broaden the use of this specific joining technique into common timber construction practice: (1) prove the applicability at the building scale, (2) propose a standardized construction system, (3) develop a convenient calculation model for practice, and (4) investigate the mechanical behavior of wood-wood connections. The first building implementation of digitally produced through-tenon connections for a folded-plate structure is presented in this work. Specific computational tools for the design and manufacture of more than 300 different plates were efficiently applied in a multi-stakeholder project environment. Cross-laminated timber panels were investigated for the first time, and the potential of such connections was demonstrated for different engineered timber products. Moreover, this work demonstrated the feasibility of this construction system at the building scale. For a more resilient and locally distributed construction process, a standardized system using through-tenon connections and commonly available small panels was developed to reconstitute basic housing components. Based on a case-study with industry partners, the fabrication and assembly processes were validated with prototypes made of oriented strand board. Their structural performance was investigated by means of a numerical model and a comparison with glued and nailed assemblies. The results showed that through-tenon connections are a viable alternative to commonly used mechanical fasteners. So far, the structural analysis of such construction systems has been mainly achieved with complex finite element models, not in line with the simplicity of basic housing elements. A convenient calculation model for practice, which can capture the semi-rigid behavior of the connections and predict the effective bending stiffness, was thus introduced and subjected to large-scale bending tests. The proposed model was in good agreement with the experimental results, highlighting the importance of the connection behavior. The in-plane behavior of through-tenon connections for several timber panel materials was characterized through an experimental campaign to determine the load-carrying capacity and slip modulus required for calculation models. Based on the test results, existing guidelines were evaluated to safely apply these connections in structural elements while a finite element model was developed to approximate their performance. This work constitutes a firm basis for the optimization of design guidelines and the creation of an extensive database on digitally produced wood-wood connections. Finally, this thesis provides a convenient design framework for the newly developed standardized timber construction system and a solid foundation for research into digitally produced wood-wood connections.
Online Access
Free
Resource Link
Less detail

Innovation in the Design of Cross Laminated Timber for Long Span Floors

https://research.thinkwood.com/en/permalink/catalogue2311
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Lewis, Kirsten
Basaglia, Bella
Shrestha, Rijun
Crews, Keith
Publisher
University of Queensland
Year of Publication
2015
Country of Publication
Australia
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Design and Systems
Keywords
Sustainable Materials
Floor Dynamics
Long Span Floors
Structural Design
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Long-span Timber Roof Structure for the New Feyenoord Stadium

https://research.thinkwood.com/en/permalink/catalogue2575
Year of Publication
2019
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Roofs

Tall Mass-Timber Building

https://research.thinkwood.com/en/permalink/catalogue2301
Year of Publication
2017
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Morales Sabogal, Agni Amram
Publisher
Virginia Tech
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Tall Wood
Tall Timber
Structural Design
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Timber Engineering - Principles for Design

https://research.thinkwood.com/en/permalink/catalogue1922
Year of Publication
2017
Topic
Design and Systems
Serviceability
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Author
Blaß, Hans Joachim
Sandhaas, Carmen
Organization
Karlsruher Institut für Technologie
Publisher
KIT Scientific Publishing
Year of Publication
2017
Country of Publication
Germany
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Topic
Design and Systems
Serviceability
Mechanical Properties
Keywords
Eurocode 5
European Standards
Structural Design
Language
English
Research Status
Complete
Notes
DOI: 10.5445/KSP/1000069616
ISBN
978-3-7315-0673-7
Summary
This comprehensive book provides in-depth knowledge and understanding of design rules according to Eurocode 5. It is based on the first edition of the STEP (Structural Timber Education Programme) series, which was prepared in 1995 by about 50 authors from 14 European countries. The present work updates and extends the STEP compilation and is aimed at students, structural engineers and other timber structure professionals.
Online Access
Free
Resource Link
Less detail

Timber Multi-Level Buildings to 20 Levels Based on a Central Core of Integrated CLT Panels

https://research.thinkwood.com/en/permalink/catalogue1804
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Chapman, John
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Keywords
Panels
Multi-Storey
Integrated Elements
Structural Design
Tall Wood
Language
English
Research Status
Complete
Summary
This research investigates a new structural system based on a central core of CLT (cross-laminated timber) panels to provide more useful multi-level timber buildings that are taller and with open floor areas. Because pinus radiata is a suitable timber for the manufacture of CLT panels, the system has the potential to add value...
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.