Skip header and navigation

12 records – page 1 of 2.

Behavior of Cross-Laminated Timber Diaphragm Panel-to-Panel Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1422
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Capacity-Based Design for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1255
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
In-Plane Stiffness
Strength
Non-Linear Springs
Finite Element Analysis
Hysteretic Behaviour
Cyclic Loading
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
The use of cross-laminated timber (CLT) in residential and non-residential buildings is becoming increasingly popular in North America. While the 2016 supplement to the 2014 edition of the Canadian Standard for Engineering Design in Wood, CSAO86, provides provisions for CLT structures used in platform type applications, it does not provide guidance for the in-plane...
Online Access
Payment Required
Resource Link
Less detail

Elastic Behavior of Cross Laminated Timber and Timber Panels with Regular Gaps: Thick-Plate Modeling and Experimental Validation

https://research.thinkwood.com/en/permalink/catalogue1341
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)

Higher Mode Effects in Multi-Storey Timber Buildings with Varying Diaphragm Flexibility

https://research.thinkwood.com/en/permalink/catalogue1480
Year of Publication
2017
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Author
Moroder, Daniel
Sarti, Francesco
Pampanin, Stefano
Smith, Tobias
Buchanan, Andrew
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Topic
Seismic
Mechanical Properties
Keywords
Nonlinear Time History Analysis
Higher Mode Effects
Stiffness
Diaphragms
Inter-Story Drift
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With the increasing acceptance and popularity of multi-storey timber buildings up to 10 storeys and beyond, the influence of higher mode effects and diaphragm stiffness cannot be overlooked in design. Due to the lower stiffness of timber lateral load resisting systems compared with traditional construction materials, the effect...
Online Access
Free
Resource Link
Less detail

Innovative Composite Steel-Timber Floors with Prefabricated Modular Components

https://research.thinkwood.com/en/permalink/catalogue1350
Year of Publication
2017
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors

Performance Based Tests on Cross Laminated Timber - Concrete Composite Floor Panels

https://research.thinkwood.com/en/permalink/catalogue1423
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors

Seismic Design of Timber Steel Hybrid High-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1270
Year of Publication
2017
Topic
Seismic
Connections
Application
Hybrid Building Systems

Seismic Response of Mid-Rise Wood-Frame Buildings on Podium

https://research.thinkwood.com/en/permalink/catalogue2604
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Chen, Zhiyong
Ni, Chun
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Earthquake
Seismic Performance
Mid-Rise
Podium Structures
Stiffness
Language
English
Research Status
Complete
Summary
An analytical study to examine the seismic performance of wood-frame podium buildings up to 8 storeys is presented in this report. Simple archetype podium buildings of 5 to 8 storeys in total height were designed in accordance with the two-step analysis procedure given in 2015 NBCC or ASCE 7-10. Nonlinear time-history dynamic analyses were conducted using earthquake ground motions selected and scaled based on the guidelines proposed by Tremblay et al. to match the reference design spectra in NBCC. Using the performance-based seismic design criteria established in the NEESWood project, it was found that: Podium buildings with a building period ratio of 1.1 (ASCE 7-10) did not meet the performance criteria, thus the period ratio requirement of 1.1 was not appropriate. A stiffness ratio of not less than 10 times (ASCE 7-10) was more appropriate as a requirement of using two-step analysis procedure for wood-frame podium buildings up to 8 storeys, compared to that of not less than 3 times (NBCC Commentary). With a higher stiffness ratio, the seismic response of the upper wood-frame structure of podium building was closer to that of the pure wood-frame structure. The results of this study will be used to guide the assessment of the feasibility of constructing wood-frame podium buildings of 8 storeys in height and the development of design guidelines. This would also guide the longer-term goal of proposing changes to the building codes.
Online Access
Free
Resource Link
Less detail

Strength and Stiffness of Cross Laminated Timber at In-Plane Beam Loading

https://research.thinkwood.com/en/permalink/catalogue2233
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams

12 records – page 1 of 2.