Skip header and navigation

25 records – page 1 of 3.

Behavior of Cross-Laminated Timber Diaphragm Panel-to-Panel Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1422
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Continuity Connection for Cross Laminated Timber (CLT) Floor Diaphragms

https://research.thinkwood.com/en/permalink/catalogue78
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors

Development and Evaluation of Mechanical Joints for Composite Floor Elements with Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue208
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Floors

Development of Novel Standardized Structural Timber Elements Using Wood-Wood Connections

https://research.thinkwood.com/en/permalink/catalogue2747
Year of Publication
2020
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Author
Gamerro, Julien
Publisher
Lausanne, EPFL
Year of Publication
2020
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Connections
Keywords
Timber Construction
Connections
Digital Fabrication
Design for Manufacturing and Assembly
Structural Design
Structural Frameworks
Semi-Rigid Connection
Experimental
Shear Strength
Compression Strength
Wood-Wood Connections
Bending Test
Bending Stiffness
Numerical Model
Load Carrying Capacity
Slip Modulus
Language
English
Research Status
Complete
Summary
Traditional wood-wood connections, widely used in the past, have been progressively replaced by steel fasteners and bonding processes in modern timber constructions. However, the emergence of digital fabrication and innovative engineered timber products have offered new design possibilities for wood-wood connections. The design-to-production workflow has evolved considerably over the last few decades, such that a large number of connections with various geometries can now be easily produced. These connections have become a cost-competitive alternative for the edgewise connection of thin timber panels. Several challenges remain in order to broaden the use of this specific joining technique into common timber construction practice: (1) prove the applicability at the building scale, (2) propose a standardized construction system, (3) develop a convenient calculation model for practice, and (4) investigate the mechanical behavior of wood-wood connections. The first building implementation of digitally produced through-tenon connections for a folded-plate structure is presented in this work. Specific computational tools for the design and manufacture of more than 300 different plates were efficiently applied in a multi-stakeholder project environment. Cross-laminated timber panels were investigated for the first time, and the potential of such connections was demonstrated for different engineered timber products. Moreover, this work demonstrated the feasibility of this construction system at the building scale. For a more resilient and locally distributed construction process, a standardized system using through-tenon connections and commonly available small panels was developed to reconstitute basic housing components. Based on a case-study with industry partners, the fabrication and assembly processes were validated with prototypes made of oriented strand board. Their structural performance was investigated by means of a numerical model and a comparison with glued and nailed assemblies. The results showed that through-tenon connections are a viable alternative to commonly used mechanical fasteners. So far, the structural analysis of such construction systems has been mainly achieved with complex finite element models, not in line with the simplicity of basic housing elements. A convenient calculation model for practice, which can capture the semi-rigid behavior of the connections and predict the effective bending stiffness, was thus introduced and subjected to large-scale bending tests. The proposed model was in good agreement with the experimental results, highlighting the importance of the connection behavior. The in-plane behavior of through-tenon connections for several timber panel materials was characterized through an experimental campaign to determine the load-carrying capacity and slip modulus required for calculation models. Based on the test results, existing guidelines were evaluated to safely apply these connections in structural elements while a finite element model was developed to approximate their performance. This work constitutes a firm basis for the optimization of design guidelines and the creation of an extensive database on digitally produced wood-wood connections. Finally, this thesis provides a convenient design framework for the newly developed standardized timber construction system and a solid foundation for research into digitally produced wood-wood connections.
Online Access
Free
Resource Link
Less detail

Duration-Of-Load Effect on the Rolling Shear Strength of Cross Laminated Timber: Duration-Of-Load Tests and Damage Accumulation Model

https://research.thinkwood.com/en/permalink/catalogue228
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Li, Yuan
Lam, Frank
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Duration of Load
Long-term
Mountain Pine Beetle
Rolling Shear Strength
Stiffness
Strength
Stress Distribution
Language
English
Research Status
Complete
Summary
In this study, the duration-of-load (DOL) effect on the rolling shear strength of cross laminated timber (CLT) was evaluated. A stress-based damage accumulation model is chosen to evaluate the DOL effect on the rolling shear strength of CLT. This model incorporates the established short-term rolling shear strength of material and predicts the time to failure under arbitrary loading history. The model was calibrated and verified based on the test data from low cycle trapezoidal fatigue tests (the damage accumulation tests). The long-term rolling shear behaviour of CLT can then be evaluated from this verified model. As the developed damage accumulation model is a probabilistic model, it can be incorporated into a time-reliability study. Therefore, a reliability assessment of the CLT products was performed considering short-term and snow loading cases. The reliability analysis results and factors reflecting the DOL effect on the rolling shear strength of CLT are compared and discussed. The results suggest that the DOL rolling shear strength adjustment factor for CLT is more severe than the general DOL adjustment factor for lumber; and, this difference should be considered in the introduction of CLT into the building codes for engineered wood design.
Online Access
Free
Resource Link
Less detail

Edge Connection Technology for Cross Laminated Timber (CLT) Floor Slabs Promoting Two-Way Action

https://research.thinkwood.com/en/permalink/catalogue2718
Year of Publication
2020
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Asselstine, Julian
Publisher
University of British Columbia
Year of Publication
2020
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Connections
Keywords
Bending
Two-Way
Self-Tapping Screws
Stiffness
Modulus of Elasticity
Language
English
Research Status
Complete
Summary
Cross-laminated timber (CLT) is a class of engineered wood product with the ability to act as a flat plate floor system transferring loads in two-directions due to the orthogonally crossed layers. Currently, dimensional limitations from manufacturing and transportation limit the minor span to about 3.0 m. This results in under utilization of the bending properties of the cross-layers or the choice of a different product because of the common use of one-way bending support conditions such as drop beams simply supporting the ends of the longer span. This study investigates the performance of a newly developed edge connection system to maintain continuity in the minor direction span of CLT and promote two-way bending action. Three connections utilizing a tension splice fastened to the underside of the panel edges with self-tapping screws are investigated, with experimental results showing promise to maintain a high level of stiffness. This connection system was placed in the maximum moment location of the minor span - attaining a connected span modulus of elasticity up to 1.17 times the intact span modulus of elasticity, indicating a reinforcing effect created by the connection. Further, the minor direction span is additionally stiffened through the use of parallel-strand lumber rim beams fixed to the edges of the CLT in the minor direction span and hidden within the cross-section of the CLT. ANSYS finite element modelling calibrated and validated from the experimental results show the potential of this flat-plate system using 5-layer CLT to reach column spacing of 6.0 m by 6.0 m limited by deflection under a serviceability limit state uniformly distributed load of 3.25 kPa. This claim maintains a high degree of conservatism, as the boundary stress obtained from the minimum observed failure load is greater than 6 times the maximum stress at an ultimate limit state load of 4.67 kPa. This system has the ability to expand the flexibility for designers to utilize CLT more efficiently and create large open floor spaces uninhibited by drop-beams.
Online Access
Free
Resource Link
Less detail

Elevated Temperature Effects on the Shear Performance of a Cross-Laminated Timber (CLT) Wall-to-Floor Bracket Connection

https://research.thinkwood.com/en/permalink/catalogue2106
Year of Publication
2019
Topic
Fire
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors

Experimental Investigations of Shear Connections with Self-Tapping-Screws for Cross-Laminated-Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2295
Year of Publication
2019
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Force Transfer Around Openings in CLT Shear Walls

https://research.thinkwood.com/en/permalink/catalogue256
Year of Publication
2014
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Pai, Sai
Organization
University of British Columbia
Year of Publication
2014
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Mechanical Properties
Keywords
Openings
Transfer Forces
Strength
Stiffness
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

In-Plane Shear Performance of Cross-laminated Timber and Cross-laminated Timber Concrete Composite Diaphragm Connection Systems

https://research.thinkwood.com/en/permalink/catalogue2241
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite

25 records – page 1 of 3.