Skip header and navigation

5 records – page 1 of 1.

Analytical Modeling of Lateral Strength and Stiffness of Inclined Self-Tapping Screw Connection

https://research.thinkwood.com/en/permalink/catalogue2651
Topic
Mechanical Properties
Connections
Author
Zhao, Ruihan
Organization
University of Alberta
Country of Publication
Canada
Topic
Mechanical Properties
Connections
Keywords
Self-Tapping Screws
Lateral Strength
Lateral Stiffness
Withdrawal
Yield
Embedment
Research Status
In Progress
Summary
The objective of this research is to develop models for predicting lateral strength and stiffness of connections containing inclined self-tapping screws, by considering the contribution of the withdrawal and yield properties of the screws and embedment properties of the connecting members.
Resource Link
Less detail

Cross Laminated Timber Reinforced with Carbon Fibre

https://research.thinkwood.com/en/permalink/catalogue2661
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Cao, Xinlei
Organization
University of Alberta
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Carbon Fiber
Flexural Stiffness
Stress Distribution
Analytical Model
Finite Element Method (FEM)
Research Status
In Progress
Summary
Although engineered wood products such as glued laminated timber (glulam) and cross-laminated timber (CLT) have successfully eliminated the flaws inherently exist in conventional wood products, they are still not comparable with steel and concrete in terms of strength and stiffness. Among all different options for reinforcement, Carbon Fibre is relatively popular due to its high tensile strength, low weight, and easy installation. This study presents an analysis of flexural stiffness and stress distributions of CLT panels reinforced with carbon fibre mats, based on an analytical method and finite element method (FEM).
Resource Link
Less detail

Development of Innovative MTP-Concrete Composite Floor System with Notched Timber Connection

https://research.thinkwood.com/en/permalink/catalogue2659
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Zhang, Lei
Organization
University of Alberta
Country of Publication
Canada
Material
Timber-Concrete Composite
Application
Floors
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Stiffness
Strength
Notched Connections
Shrinkage
Research Status
In Progress
Summary
The objective of this research is to develop optimum notch profile to achieve maximum connection stiffness and strength properties, characterize notched timber connection MTP-concrete floor systems, including concrete shrinkage and develop floor system details and design procedure.
Resource Link
Less detail

Load Distribution in Inclined Self-Tapping Screw Connections with Steel Side Plates

https://research.thinkwood.com/en/permalink/catalogue2652
Topic
Mechanical Properties
Connections
Application
Shear Walls
Beams
Author
Joyce, Tom
Organization
University of Alberta
Country of Publication
Canada
Application
Shear Walls
Beams
Topic
Mechanical Properties
Connections
Keywords
Self-Tapping Screws
Steel Plates
Strength
Stiffness
Research Status
In Progress
Summary
The objective of this research is to develop a model to predict the distribution of loads within connections with multiple self-tapping screw fasteners and steel side plates, and use this model to predict the strength and stiffness of multiple-inclined self-tapping screw connections. These results would facilitate the design of large scale connections with long rows of self-tapping screw fasteners, such as may be used for mass timber shear wall connections or splice joints for long-span timber beams.
Resource Link
Less detail

Seismic Design Approach for MTP Balloon Construction - Connection Properties

https://research.thinkwood.com/en/permalink/catalogue2648
Topic
Mechanical Properties
Connections
Author
Niederwestberg, Jan
Organization
University of Alberta
Country of Publication
Canada
Topic
Mechanical Properties
Connections
Keywords
Strength
Stiffness
Ductility
Energy Dissipation
Failure Mode
Steel Plates
Monotonic Loading Tests
Cyclic Loading Tests
Research Status
In Progress
Summary
The objective of this research is to characterize of load-deformation responses of tested connections(stiffness, strength, ductility, energy dissipation, failure modes) by testing large STS connections with steel side plates under monotonic and cyclic loads.
Resource Link
Less detail