Skip header and navigation

4 records – page 1 of 1.

The Design of a Semi-Prefabricated LVL-Concrete Composite Floor

https://research.thinkwood.com/en/permalink/catalogue103
Year of Publication
2012
Topic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Yeoh, David
Fragiacomo, Massimo
Publisher
Hindawi Publishing Corporation
Year of Publication
2012
Country of Publication
Egypt
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Keywords
Flexural Stiffness Method
Prefabrication
Language
English
Research Status
Complete
Series
Advances in Civil Engineering
Summary
This paper describes the design of a novel semi-prefabricated LVL-concrete composite floor that has been developed in New Zealand. In this solution, the floor units made from LVL joists and plywood are prefabricated in the factory and transported to the building site. The units are then lifted onto the supports and connected to the main frames of the building and to the adjacent units. Finally, a concrete topping is poured on top of the units in order to form a continuous slab connecting all the units. Rectangular notches cut from the LVL joists and reinforced with coach screws provide the composite action between the concrete slab and the LVL joists. This system proved to be an effective modular solution that ensures rapid construction. A design procedure based on the use of the effective flexural stiffness method, also known as the “gamma method” is proposed for the design of the composite floor at ultimate and serviceability limit states, in the short and long term. By comparison with the experimental results, it is shown that the proposed method leads to conservative design. A step-by-step design worked example of this novel semi-prefabricated composite floor concludes the paper.
Online Access
Free
Resource Link
Less detail

Design of Timber-Concrete Composite Structures

https://research.thinkwood.com/en/permalink/catalogue1936
Year of Publication
2018
Topic
Mechanical Properties
Connections
Serviceability
Design and Systems
Material
Timber-Concrete Composite

Seismic Analysis of Cross-Laminated Multistory Timber Buildings Using Code-Prescribed Methods: Influence of Panel Size, Connection Ductility, and Schematization

https://research.thinkwood.com/en/permalink/catalogue566
Year of Publication
2015
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sustersic, Iztok
Fragiacomo, Massimo
Dujic, Bruno
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Multi-Story
FE Analysis
Geometry
Vertical Load
Friction
Stiffness
Strength
Ductility
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
This paper investigates the seismic analysis of multistory cross-laminated timber (XLAM) buildings. The influence of different parameters such as wall geometry, vertical load level, friction, and, most importantly, connection stiffness, strength, and duc...
Online Access
Free
Resource Link
Less detail

Seismic Analysis of Cross Laminated Timber Buildings Using Code Prescribed Methods

https://research.thinkwood.com/en/permalink/catalogue1646
Year of Publication
2016
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sustersic, Iztok
Fragiacomo, Massimo
Dujic, Bruno
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
FE Analysis
Multi-Story
Geometry
Vertical Load
Friction
Strength
Stiffness
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3453-3461
Summary
This paper investigates the seismic analysis of multi-story cross laminated timber (XLAM) buildings. The influence of different parameters such as wall geometry, vertical load level, friction and, most importantly, connection stiffness, strength and ductility is assessed. Linear and nonlinear finite element (FE) analyses are carried out on a...
Online Access
Free
Resource Link
Less detail